Archival Report

Default Mode Connectivity in Major Depressive Disorder Measured Up to 10 Days After Ketamine Administration

Jennifer W. Evans, Joanna Szczepanik, Nancy Brutsché, Lawrence T. Park, Allison C. Nugent, and Carlos A. Zarate Jr.

ABSTRACT

BACKGROUND: The symptoms of major depressive disorder (MDD) are rapidly alleviated by administration of a single dose of the glutamatergic modulator ketamine. However, few studies have investigated the potential sustained neural effects of this agent beyond immediate infusion. This study used functional magnetic resonance imaging to examine the effect of a single ketamine infusion on the resting state default mode network (DMN) at 2 and 10 days after a single ketamine infusion in unmedicated subjects with MDD as well as healthy control subjects (HCs).

METHODS: Data were drawn from a double-blind, placebo-controlled crossover study of 58 participants (33 with MDD and 25 HCs) who received an intravenous infusion of either ketamine hydrochloride (0.5 mg/kg) or placebo on 2 separate test days spaced 2 weeks apart. Eight minutes of functional magnetic resonance imaging resting state data was acquired at baseline and at about 2 and 10 days after both infusions. The DMN was defined using seed-based correlation and was compared across groups and scans.

RESULTS: In subjects with MDD, connectivity between the insula and the DMN was normalized compared with HCs 2 days postketamine infusion. This change was reversed after 10 days and did not appear in either of the placebo scans. Group-specific connectivity differences in drug response were observed, most notably in the insula in subjects with MDD and in the thalamus in HCs.

CONCLUSIONS: Connectivity changes in the insula in subjects with MDD suggest that ketamine may normalize the interaction between the DMN and salience networks, supporting the triple network dysfunction model of MDD.

Keywords: Default mode network, Functional magnetic resonance imaging (fMRI), Glutamatergic modulator, Ketamine, Major depressive disorder, Resting state

https://doi.org/10.1016/j.biopsych.2018.01.027
to negatively valenced emotional stimuli in patients with treatment-resistant MDD was normalized after ketamine administration (21). They also found that resting state connectivity in the right caudate predicted treatment response, suggesting that the caudate was specifically affected by ketamine. In a resting state analysis, Abdallah et al. found that the decreased global connectivity observed in their subjects with MDD at baseline was normalized to HC levels in ketamine responders (22).

In addition, only two fMRI studies have examined ketamine-induced changes in HCs the day after ketamine administration. One resting state study found that ketamine reduced connectivity of the dorsal nexus with the DMN and cognitive control network 1 day after blinded infusion (23). The other study found reduced neural reactivity in the bilateral amygdala-hippocampal complex during emotional stimulation with negative emotional faces (24). Taken together, these studies suggest that ketamine decreases brain response in regions typically identified as hyperactive in depression (25).

The current study sought to investigate the neural correlates of longer-term, sustained mood improvements within the first 10 days after ketamine infusion in medication-free patients with treatment-resistant MDD compared with a group of HCs. The DMN was used to investigate differences in resting state fMRI after ketamine infusion. Based on previous findings that ketamine normalizes blood oxygen level-dependent activity in regions altered in depression (22,26), we hypothesized that the DMN differences between the subjects with MDD and HCs would be reduced after ketamine administration, particularly in regions associated with the SAL and CEN.

METHODS AND MATERIALS

Subjects

In total, 33 subjects with MDD and 25 HCs who had a resting state fMRI scan as part of a larger study (NCT00088699, National Institutes of Health Protocol No. 04-M-0222, sub study 4) were included in this analysis. All subjects were between 18 and 65 years old and were recruited between 2011 and 2016. Subject demographics are listed in Supplemental Table S1. Each subject provided written informed consent as approved by the National Institutes of Health Combined Central Nervous System Institutional Review Board.

Subjects with MDD were diagnosed with recurrent MDD without psychotic features and were experiencing a current depressive episode of at least moderate severity lasting at least 4 weeks; severity was defined as a Montgomery–Åsberg Depression Rating Scale (MADRS) (27) total score ≥ 20 at screening and prior to each infusion. Patient diagnoses were confirmed using the Structured Clinical Interview for Axis I DSM-IV Disorders with psychiatric screen, patient version (28). Subjects with MDD were also required to be treatment resistant, defined as not having responded to at least one adequate antidepressant dose/duration trial as assessed using the Antidepressant Treatment History Form (29). In addition, they were required to be free of comorbid substance abuse or dependence for at least 3 months (except for nicotine or caffeine) prior to inpatient admission, have a negative drug and alcohol urine toxicology screen and pregnancy test within 24 hours prior to each MRI session, have no unstable medical problems, and be in good physical health as assessed by medical history, physical examination, blood labs, urinalysis, and toxicology. Other exclusion criteria included concomitant treatment with psychotropic medications during the 2 weeks before randomization (5 weeks for fluoxetine and 3 weeks for aripiprazole) and the presence of metallic (ferromagnetic) implants.

HCs were screened using the Structured Clinical Interview for Axis I DSM-IV Disorders, nonpatient version (30) and had no personal or family history (first-degree relative) of mood or Axis I disorder. All subjects were medically healthy as determined by medical history, physical examination, blood labs, urinalysis, and toxicology.

Study Design

The double-blind, placebo-controlled crossover study design is illustrated in Figure 1, which also lists the scans and rating scales obtained. All subjects received an intravenous infusion of either saline solution or 0.5 mg/kg of ketamine hydrochloride; 2 weeks later (to avoid carryover effects), subjects were blindly crossed over to the other arm of the study. Medical staff administering the infusion, investigators, raters, and subjects all were blinded to randomization, which was performed by the National Institutes of Health Clinical Center pharmacy department. All subjects participated in both arms of the study because depressive symptoms returned for all subjects with MDD before the second infusion. Ketamine infusions were administered intravenously over 40 minutes via an infusion pump on an inpatient unit by medical staff with advanced cardiac life support training. All subjects with MDD were medication free for 2 weeks before randomization and throughout the entire study. Similarly, HCs were not permitted to take any medications with central nervous system effects throughout the study.

Rating Scales

The MADRS was used throughout the study to obtain mood ratings. Ratings were obtained at −60 (baseline), 40, 80, 120, and 230 minutes postinfusion as well as on days 1, 2, 3, 7, 10, and 11. Average MADRS scores were estimated using a linear mixed effects model with baseline as a covariate using all time points. A separate model was used for each group.

fMRI Scanning

Resting state fMRI scans (duration of 8 minutes and resolution of 3.75 × 3.75 × 3.5 mm) were acquired on a 3T scanner (HDX; General Electric Healthcare, Milwaukee, WI) along with an anatomical scan (1 mm isotropic resolution) using an eight-channel coil. The scans were conducted at baseline (b; in this case, 2 or 3 days before the first infusion) and at days 2 or 3 and 10 or 11 after placebo (p2 and p10, respectively) and ketamine (k2 and k10, respectively) infusions, yielding an intended total of five scans per subject (b, p2, p10, k2, and k10). Subjects were instructed to close their eyes, relax, and not fall asleep. Cardiac and respiration traces were also recorded using the manufacturer’s photoplethysmograph and respiratory belt, respectively. Imaging acquisition parameters and details of the preprocessing methods can be found in the Supplement.
Data Analysis

Across all analyses, data were processed using AFNI version 17.3.05 (November 2016) (31). The DMN was defined using a seed-based correlation method (3dTcorr) where the average time course from a 6-mm-radius sphere placed at the posterior cingulate cortex (3dROIstats) at the Montreal Neurological Institute template coordinates of (0, −52, 27) (32) was correlated with all other brain voxels. The correlation values were converted to Z scores using Fisher transform.

Group analyses were performed with 3dLME (33) using a linear mixed effects model including both the MDD and HC groups. The model had a fixed effect of scan type across all scan days (b, k2, k10, p2, and p10) and a random effect of subject (to account for the repeated scans). Between-group differences were included for each scan time point (b, k2, k10, p2, and p10). Post hoc contrasts were also calculated in order to examine differences between each postinfusion scan and baseline (k2-b, k10-b, p2-b, and p10-b) as well as the difference between postketamine and postplacebo scans at days 2 and 10 (k2-p2 and k10-p10). Familiarly error multiple comparison correction for the group maps was first performed by estimating the smoothness of the data after preprocessing (3dFWHMx). Corrected cluster size was calculated using 3dClustSim with this value. Group maps were familywise error-corrected to \( p < .05 \) with an initial threshold of \( p < .05 \) using a cluster size of \( > 120 \).

To specifically investigate the triple network model, a region of interest (ROI) analysis was performed using the FIND ROI (34) set for the SAL (anterior and posterior) and CEN (left and right). Further details regarding the ROIs for these networks can be found in the Supplement and are also shown in Supplemental Figure S1. The average correlation of scan type with the DMN within these ROIs was calculated per subject and averaged over the group. Statistics for these values were calculated using a linear mixed effects model in R (35) separately for each group, with scan type as a fixed factor (five levels) and subject as a random factor. Significance was established at \( p < .05 \).

RESULTS

Subject and Scan Characteristics

The MDD and HC groups did not differ significantly with regard to age (MDD: 36 ± 10 years; HC: 33 ± 10 years; \( t_{58} = 0.96, p = .34 \)) or gender (MDD: 61% female; HC: 60% female; \( x^2_1 = 0.05, p = .82 \)). Supplemental Table S2 lists the number of scans completed at each time point as well as the final number included in the analyses. Of the 236 total scans obtained, 36 were excluded from the analysis; of these, 10 scans (6 MDD and 4 HC) were excluded due to incomplete physiological data, 20 scans (9 MDD and 11 HC) were excluded for excessive motion, and 6 scans (3 MDD and 3 HC) were excluded due to high correlation between the respiration volume trace and the average global signal, which increased correlations across the brain. No significant differences in motion between groups or scan pairs were observed except for the p2 scan (average motion per timepoint of 0.03 mm for the MDD group and 0.04 mm for the HC group \( t_{44} = −3.17, p = .003 \)). No significant differences in respiration or heart rate were found between groups or scans (details appear in Supplemental Figure S2).

MADRS Changes

Within hours of ketamine infusion, subjects with MDD had significantly improved MADRS scores, a change that was maintained at the day 2 time point (mean difference of 9.4, \( p < .001 \)) (see Figure 2). This change was significantly different (\( p < .001 \)) from the placebo response for this group at day 2 and until the scan at day 10 (\( p < .02 \)).

No significant differences in MADRS score were observed for the HCs from baseline or placebo at either day 2 or day 10. These results are consistent with findings from a recently published study of a larger cohort; details are available in (36).

DMN Between-Group Differences for Each Scan Day

At baseline, the HCs had greater connectivity with the DMN than the MDD group in the right dorsolateral prefrontal cortex (Brodmann areas [BA] 6 and 9) and left postcentral gyrus (insula to BA 43) (see Figure 3 and Supplemental Table S3 for cluster coordinate locations). Across all the scans (b, k2, p2, k10, and p10), the HCs had greater connectivity with the DMN than the MDD group in the right precentral gyrus (BA 44) as well as the left and right postcentral gyrus (BA 40).

A smaller difference unique to the k2 scan was noted with regard to connectivity of the insula with the DMN between the MDD and HC groups. This normalization between the groups returned to baseline by day 10. The anterior cingulate cortex (ACC) (BA 24) showed increased connectivity in the HCs compared with subjects with MDD at k2 that was still apparent at k10 but was not apparent at b or in the p2 scan. In the k10 scan, the right supramarginal gyrus (BAs 22 and 39) showed increased connectivity in subjects with MDD that...
was greater than in HCs; increased connectivity was also noted in the HCs compared with the MDD group in BA 46 in this scan only. In the p10 scan, the occipital cortex (bilateral BA 18) showed an increased difference in the HCs versus subjects with MDD.

Many of the regions described above overlap with the CEN, which comprises the dorsolateral prefrontal cortex (BAs 8, 9, 10, and 46), as well as with the SAL, which includes the ACC, insula, and ventrolateral prefrontal cortex (37). The DMN is composed of the ventromedial prefrontal cortex, posterior cingulate cortex, bilateral inferior parietal cortex, and middle temporal lobe (38). These networks are illustrated in Supplemental Figure S1.

Group-Specific Differences in Response to Ketamine at Days 2 and 10

To further understand differences between the MDD and HC groups, group-specific maps were made to contrast the drug and placebo scans for each scan day (day 2: k2-p2; day 10: k10-p10) and each group (see Figure 4 for illustration and Supplemental Table S4 for cluster coordinates). Both groups had increased DMN connectivity at k2 compared with p2. Subjects with MDD had increases in the right and left insula, middle frontal gyrus (BA 31), postcentral gyrus (BA 5), and occipital gyrus (BAs 18 and 19). HCs showed increases in the left thalamus, cingulate cortex (BA 24), cuneus (BA 18), and right middle frontal gyrus (BAs 6, 8, and 9).

At k10 (relative to p10), the MDD group showed reduced DMN connectivity to the occipital gyrus, a measure that had been elevated at k2. Other regions elevated at k2 for the MDD group (right and left insula, BAs 5 and 31) were no longer increased at k10. However, the right postcentral gyrus (BA 40) showed an increase, and the left dorsolateral prefrontal cortex (BA 9) showed a decrease, in DMN connectivity at k10.

Region-Specific Correlation Changes Among the CEN, SAL, and DMN

To compare the magnitude of the regional connectivity changes across scan days, group mean correlation values were calculated among ROIs for the CEN, SAL, and DMN. ROIs with significant within-group changes between the b and k2 scans—suggesting a ketamine effect—as well as the b and p2 scans were the right posterior insula for subjects with MDD and the left thalamus for HCs. For both the MDD and HC groups, Figure 5 displays the group mean correlations for these regions with the posterior cingulate cortex across each of the scan days along with the opposite side ROI and the anterior insula for comparison.

Reduced connectivity was observed for all the ROIs in the MDD group compared with the HC group. Consistent with the whole-brain results, a significant increase in connectivity (Z-score change = 0.95, p < .05) was observed in the right posterior insula for the MDD group. However, connectivity in the left posterior insula remained unchanged at all time points. In the left thalamus, a significant increase in connectivity was observed at k2 for the
HC group (change = 1.26, \( p = .05 \)) that was not found at other scan time points or for the MDD group.

**DISCUSSION**

This double-blind, placebo-controlled, crossover fMRI study examined the effects of a single ketamine infusion on DMN connectivity in both subjects with MDD and HCs. We found that, compared with HCs, insular connectivity with the DMN was normalized in subjects with MDD 2 days after a ketamine infusion, particularly in the right hemisphere. This change was reversed after 10 days and did not appear in either placebo scan. Furthermore, there were group-specific differences in regional connectivity with regard to drug response, notably for the insula in subjects with MDD and for the thalamus in HCs.

Interestingly, connectivity regions were consistently different between the MDD and HC groups across the baseline and placebo scans, suggesting a reliable baseline difference between the groups. This is particularly important given the considerable overlap between previously described drug and placebo responses (39–41), and it enabled the accurate determination of regions affected by ketamine. It should be noted, however, that several regions previously identified as having increased connectivity with the DMN in subjects with MDD (compared with HCs) did not achieve significance in the current study, including the limbic regions (18,42). One possible explanation is that DMN connectivity in our treatment-resistant population differed from that in other depressed populations, possibly due to the existence of depression subtypes (43). One study that focused specifically on differences between treatment-resistant (refractory) and non-refractory depression similarly found overall decreases in connectivity between subjects with MDD and HCs (44). That study further identified the prefrontal areas (middle temporal and frontal gyri) regions as hypoactive in the treatment-resistant group compared with HCs, consistent with our study. It should be noted that the definition of treatment resistance may vary between research groups, which may also contribute to variance in reported results. However, the use of subtypes that can be defined from resting state data (43) may help to improve reproducibility.

In the current study, normalization of the connectivity between the insula and the DMN in subjects with MDD 2 days postketamine infusion was consistent with the improvement in global brain connectivity previously observed in patients with MDD 1 day postketamine infusion in this region (22). However, we also found that this region experienced a change in connectivity that corresponded to the response relapse seen in the MADRS scores. This finding is particularly important because the insula shares substantial anatomical and functional connections with regions that have been implicated in the neurological differences observed in individuals with MDD (45). The insula is also implicated as a key node in the integration of external emotional stimuli and has been shown to play a role in interpreting emotional information and switching between the CEN and DMN (37). Thus, the postketamine increased connectivity between the insula and the DMN observed in the current study suggests an improved ability to process external stimuli that, in turn, may be linked to symptom improvement. Interestingly, the posterior insula, where we found the

---

**Figure 3.** Group (healthy control [HC] and major depressive disorder [MDD]) differences in connectivity with the posterior cingulate cortex seed of the default mode network across scans at each scan day. The mean Z-score maps are shown at a threshold of \( p < .05 \) (familywise error corrected). The red circles highlight regions of significant difference (second row: bilateral insula [salience network] and anterior cingulate cortex [central executive network]; third row: right Brodmann area 22 and left Brodmann area 46 [salience network]; fifth row: Brodmann area 18). R, right.
strongest pattern of normalization in subjects with MDD, is linked to pain, sensorimotor processes, and language (46). This normalization may indicate relief of somatic depressive symptoms linked to the abnormal interoception associated with the insula (47). Indeed, a post hoc correlation of connectivity between the right posterior insula and the DMN with the MADRS values for the subjects with MDD supports the existence of this positive association (see Supplemental Figure S4).

A notable degree of change was also observed in the occipital cortex in the MDD group. Connectivity between the DMN and the occipital cortex was increased at day 2 postketamine compared with baseline, but it was decreased at day 10, potentially indicating a rebound effect. Changes in the occipital cortex have previously been associated with antidepressant use (48), and middle occipital activity has been shown to correlate with subsequent antidepressant response (49).

Our analysis also found regions of increased connectivity in the precentral and postcentral gyri of the MDD group. Other studies have noted that gray matter is reduced in these regions in subjects with MDD compared with HCs (50); thus, our results may reflect a ketamine-modulated increase in neural plasticity. Overall, many of the regions showing increased connectivity with the DMN posterior cingulate cortex seed in subjects with MDD postketamine overlapped with nodes in the CEN and SAL. This is consistent with the triple network model of dysfunction, which posits that DMN connectivity with the CEN and SAL is disturbed in MDD and further suggests that ketamine may normalize the interaction of these networks with the DMN following symptom improvement. Although our discussion is currently limited to the regions used in our ROI analysis, future work using complex functional network analysis techniques (51) may provide more insight into the interplay between these networks.

In the HCs, the general increase of connectivity observed 2 days postinfusion is potentially inconsistent with the only prior study (23) that has explored response to ketamine at 1 day postinfusion in HCs. That study found reduced functional connectivity of the pregenual ACC and medial prefrontal cortex with the DMN. Nevertheless, it is possible that the increase observed 2 days postinfusion may reflect a renormalization effect occurring after the decrease seen at day 1 by Scheidegger et al. (23).

Finally, the current study also found increased connectivity in the thalamus, occipital cortex, and prefrontal cortex; changes in these areas are consistent with other studies that examined changes during and immediately after ketamine infusion (52,53). The increases we observed in the ACC and visual cortex may be attributable to changes in the balance of the SAL and CEN. It is interesting, however, that any connectivity differences were found at 2 days postinfusion in HCs given that ketamine is quickly metabolized and that HCs showed no lasting behavioral effects beyond a few hours.

The study is associated with several limitations. First, we used an initial threshold of $p < .05$ in order to enable investigation of regional differences between the groups and conditions in this study; however, increasing the initial threshold would have considerably decreased the number of significant regions identified (see Supplemental Figure S3). In addition, using a strict initial threshold of $p < .001$, as recommended by some in the literature (54), would leave very few regions of significance. Thus, we chose a more lenient threshold in order to give a balanced report. This sensitivity to initial threshold is partly due to the relatively modest MDD and HC sample sizes compared with the heterogeneity of the population and drug
response. Second, because this was a longitudinal study with repeated scans, we inevitably had a reduced number of subjects completing all scans, leading to missing data in the analysis; we controlled for this problem by using a linear mixed effects model that is specifically designed to handle this issue (33). Third, the baseline for a resting state study is not well defined, nor are the potential neural effects of expectancy, both of which are confounding factors. To address this, we included both a baseline scan and a placebo scan—each administered at two time points—to control for variations in the resting state data that would be unrelated to ketamine response in terms of both drug anticipation and physiological or natural neural fluctuation. We further tried to mitigate confounding factors by measuring and directly regressing physiological noise, and the results presented here should be considered in this context. Lastly, we did not include rating scale as a covariate in this analysis because the depression rating scales used here did not have sufficient dynamic range to capture mood changes in the HC cohort at the scan time point of day 2. Thus, our MDD results may be strengthened by using a behavioral response measure that captures inter-subject variability at that time or by investigating scans at earlier times, which is an area of future interest.

Taken together, the results of this study demonstrate that it is possible to characterize the neural correlates associated with the onset and offset of ketamine’s antidepressant effects. While subjects with MDD and HCs responded differently to ketamine, response was generally characterized by increased connectivity with the DMN at 2 days postinfusion, an increase that had dissipated by day 10. Furthermore, the connectivity

**Figure 5.** Mean connectivity for regions of interest with significant differences across scans for both healthy control (HC; red) and major depressive disorder (MDD; blue) groups for the bilateral anterior (first row), posterior insula (second row), and thalamus (third row). Error bars represent standard deviations.
changes observed in the insula in subjects with MDD imply a normalization of the interaction between the DMN and SAL, supporting the triple network dysfunction theory in MDD. In the context of real-world ketamine use and the increased interest in using repeat doses of this agent to maintain antidepressant response, these findings could help to identify the window of plasticity and plan the optimal time for subsequent doses. The results also suggest an avenue whereby neural response to pharmaceutical drug interventions can be monitored and individual dose regimens can be optimized.

ACKNOWLEDGMENTS AND DISCLOSURES

Funding for this work was provided by the Intramural Research Program at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH) Grant Nos. IRP-NIMH-NIH and ZIA-NIH002857 (to CAZ), by a NARSAD Independent Investigator Grant (to CAZ), and by a Brain & Behavior Mood Disorders Research Award (to CAZ). This work used the computational resources of the NIH High-Performance Computing Biowulf cluster (http://hpcc.nih.gov).

We thank the 7SE research unit and staff for their support and Elizabeth Ballard for helpful comments on the manuscript. Lione Henter (NIMH) provided invaluable editorial assistance.

CAZ is listed as a coinventor on a patent for the use of ketamine in major depression and suicidal ideation; as a coinventor on a patent for the use of (2R,6R)-hydroxynorketamine, (S)-dehydroxynorketamine, and other stereo-isomeric dehydro and hydroxylated metabolites of (R,S)-ketamine metabolites in the treatment of depression and neuropathic pain; and as a coinventor on a patent application for the use of (2R,6R)-hydroxynorketamine and (2S,6S)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and posttraumatic stress disorder. He has assigned his patent rights to the U.S. government but will share a percentage of any royalties that may be received by the government. The authors report no biomedical financial interests or potential conflicts of interest.

ClinicalTrials.gov: Rapid Antidepressant Effects of Ketamine in Major Depression: https://clinicaltrials.gov/ct2/show/NCT00688699; NCT00088699.

ARTICLE INFORMATION

From the Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.

Address correspondence to Jennifer W. Evans, Ph.D., Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Room 7-5331, Bethesda, MD 20814; E-mail: jennifer.evans@nih.gov.

Received Nov 3, 2017; revised Jan 5, 2018; accepted Jan 23, 2018. Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2018.01.027.

REFERENCES

Postketamine DMN Connectivity in Depression


