Tag Archives: ketamine for depression

KETAMINE CENTER NORTHERN VIRGINIA | 703-844-0184 | NOVA HEALTH RECOVERY | SPRAVATO KETAMINE NASAL SPRAY CENTER |ALEXANDRIA, VA 22306 | KETAMINE FOR DEPRESSION AND PTSD | 22304 |20176 | 703-844-0184 | 22101 | 22102 | FAIRFAX KETAMINE INFUSION CENTER 22304 | DR. SENDI | Ketamine and OCD, PTSD, Depression, Anxiety



get link Call NOVA Health Recovery at 703-844-0184 for a free consultation for a Ketamine infusion. No referral needed. We offer intranasal Ketamine follow up therapy as well. Alexandria, Va 22306.

levitra uk Call NOVA Health Recovery at 703-844-0184 for a free consultation for a Ketamine infusion. No referral needed. We offer intranasal Ketamine follow up therapy as well. Alexandria, Va 22306.

Ketamine: A Promising Novel Therapy for Anxiety and PTSD

Ketamine was originally approved by the US Food and Drug Administration (FDA) as an anesthetic, but is increasingly being used to treat mood disorders, such as treatment-resistant depression, anxiety disorders, and post-traumatic stress disorder (PTSD).1,2 Several studies have also found it to be effective for treating suicidal ideation.3,4

“Ketamine can play an important role in the treatment of anxiety disorders,” according to Prakash Masand, MD, co-founder, chairman, and CEO of Centers of Psychiatric Excellence (COPE) (https://www.copepsychiatry.com) and adjunct professor at the Academic Medicine Education Institute, Duke-National University of Singapore Medical School (Duke-NUS).

“Nowadays, people with anxiety disorders are treated either with a generic antidepressant, such as an SSRI (selective serotonin reuptake inhibitor), an SNRI (selective norepinephrine reuptake inhibitor), or a benzodiazepine and if they don’t respond to one of these, they get a trial of another or several more,” Dr Masand said.

However, between 30% and 40% of these patients will not achieve remission, despite 3 or 4 different traditional agents, and even with evidence-based nonpharmacologic therapies, such as cognitive behavioral therapy (CBT) or mentalization-based therapy (MBT), he noted.

“No good current strategies are available for these non-responders, so novel agents are being studied — including ketamine, which is accumulating an evidence base as [being] rapidly effective for an array of anxiety disorders, including social anxiety disorder (SAD) and PTSD,” he said.

canadian levitra generic buy online How Does Ketamine Work?

A growing body of evidence points to the role of glutamate, a widely distributed excitatory neurotransmitter, in mediating response to stress and the formation of traumatic memories.2 Ketamine is an ionotropic glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist. Its antidepressant and anti-anxiety effects are presumed to occur through activating synaptic plasticity by increasing brain-derived neutrophic factor translation and secretion and also by inhibiting glycogen synthase kinase-3 and activating mammalian target of rapamycin signaling.5

Brain-derived neutrophic factor plays a role in behavioral responses to classical antidepressants, but the impact on synaptic plasticity may take several weeks to manifest. In contrast, ketamine-mediated synaptic plasticity changes appear to occur within a matter of hours after ketamine administration.5

“The current thinking is that eventually, 6 to 12 weeks after initiating treatment with traditional antidepressants, dendritic growth and increased synaptic connections occur but with ketamine, these can occur within 24 hours of the infusion,” Dr Masand said.

comprare vardenafil generico pagamento online Ketamine and Anxiety: An Increasing Evidence Base

“Ketamine has been studied and shown [to be] effective with an array of anxiety disorders, including SAD, general anxiety disorder (GAD), and PTSD, although the data on its effectiveness in obsessive compulsive disorder (OCD) are more mixed,” Dr Masand observed.

source url GAD/SAD

  • A small study of patients with GAD and/or SAD (n=12) compared 3 ascending ketamine doses to midazolam. Each was given at 1-week intervals, with midazolam counterbalanced in dosing position across patients. Ketamine was found to dose-dependently improve scores on the Fear Questionnaire. Moreover, it’s impact on decreasing theta frequency in the right frontal sites assessed via  electroencelphalogram (EEG) was comparable to that of conventional anxiolytics.6
  • Glue et al evaluated the efficacy and safety of ketamine in 12 patients with refractory GAD and/or SAD who were not currently depressed using an ascending single-dose at weekly intervals study design. Within 1 hour of dosing, patients reported reduced anxiety, which persisted for up to 7 days.7
  • A continuation of that study evaluated the impact of maintenance treatment ketamine in patients with GAD and/or SAD (n=20) and found that 18 of the 20 patients reported ongoing improvements in social functioning and/or work functioning during maintenance treatment. The researchers concluded that maintenance therapy ”may be a therapeutic alternative for patients with treatment-refractory GAD/SAD.”8

“What is interesting about this study is that the impact of just one infusion lasted for 14 weeks, suggesting that patient[s] with anxiety disorders might have longer maintenance of response than patients with major depression, where the response has been maintained for only one week,” Dr Masand commented.

watch Anxious Depression

  • A study of patients with anxious and non-anxious bipolar depression (n=21 for both groups) found that both anxious and non-anxious patients with bipolar depression had significant antidepressant responses to ketamine, although the anxious depressed group did not show a clear antidepressant response disadvantage over the non-anxious group.9 “Given that anxiety has been shown to be a predictor of poor treatment response in bipolar depression when traditional treatments are used, our findings suggest the need for further investigations into ketamine’s novel role in the treatment of anxious bipolar depression.,” the investigators concluded.9

Related Articles

http://maientertainmentlaw.com/?search=before-then-buy-lasix-from-online-drugstore-with-overnight-delivery OCD

  • An open-label trial of ketamine in 10 patients with treatment-refractory OCD found that ketamine’s effects on OCD symptoms, in contrast to depressive symptoms, did not seem to persist or progress after the acute effects of ketamine had dissipated.10
  • On the other hand, another randomized controlled trial (RCT) of 15 patients with OCD found that anti-OCD effects from a single intravenous dose of ketamine persisted for more than 1 week in some patients with OCD with constant intrusive thoughts, demonstrating that “a drug affecting glutamate neurotransmission can reduce OCD symptoms without the presence of an [SSRI].”11

http://amoxil-antibiotics.com PTSD

In PTSD, there is “mounting evidence for a role of the excitatory neurotransmitter glutamate in stress responsiveness, the formation of traumatic memories, and the pathophysiology of PTSD, raising the possibility of identifying novel glutamatergic interventions for this disorder.”12

  • One double-blind study demonstrated that infusion of ketamine rapidly and significantly reduces symptom severity in patients with  PTSD compared with midazolam.2
  • Another study found that administration of ketamine immediately after witnessing a traumatic event has been shown to prevent the enhancement of passive avoidance learning in mice.13Ketamine may thus target the mechanisms involved in the consolidation of traumatic memory and may enable the brain to reconsolidate memory and release trauma.14
  • A case study of a child with PTSD reported remission from behavioral dysregulation after receiving procedural ketamine.15

http://cinziamazzamakeup.com/?x=farmacia-viagra-generico-a-Verona Drawbacks and Potential Adverse Effects

The main concern regarding the use of ketamine for anxiety disorders is the lack of a road map regarding maintenance, Dr Masand noted.

“At COPE, we have found that roughly 30% to 40% of our patients being treated with ketamine require maintenance infusions, and we highly personalize this approach so that patients can identify early signs of recurrence or relapse and we can devise a treatment schedule to prevent them,” he said.

Some patients continue treatment with pharmacotherapy, including standard antidepressants, benzodiazepines, or a mood stabilizer such as valproate and some patients become more receptive to psychotherapies such as CBT,” he stated.

However, “there is very little data regarding what happens long-term in this patient population.”

“Most side effects are mild and transient,” Dr Masand reported. “Patients must be monitored because of potential increases in blood pressure and pulse.”

Additional adverse events include nausea or vomiting, which are also mild and transient. Patients may be pre-treated with prophylactic anti-nausea medication, such as ondansetron, to pre-empt these symptoms, he said.

Some patients experience dissociation, or an out-of-body experience, which is also usually transient but seen by some patients as “annoying,” he noted. “Dissociative experiences are sometimes seen as a biomarker for insufficient response and suggest that the dose should be increased.”

Providers should be aware that cystitis and lower urinary tract pathologies (eg, detrusor over-activity) have been reported in long-term ketamine users, but typically only at high doses.16

Ketamine’s psychedelic effects make it a” popular recreational drug.”16 At lower doses, the predominant effects are stimulating, and users experience mild dissociation with hallucinations and a distortion of time and space. However, higher doses can induce more severe, schizophrenia-like symptoms and perceptions.16 Although these effects resolve rapidly, long-term use “can cause more pronounced and persistent neuropsychiatric symptoms. For this reason, ketamine should be “used cautiously with other drugs that alter mood and perception, including alcohol, opioids, benzodiazepines and cannabis.”16

viagra generico pagamento online a Firenze Promising Role

“Ketamine for treatment-resistant depression has a robust evidence base and a rapidly-growing evidence base for its use in anxiety disorders,” Dr Masand said.

“Given the gaps in current treatment, this promising agent is occupying a more promising role in treatment of anxiety disorders, such as PTSD. Considering how common PTSD is, ketamine can make an important difference for a large number of people who suffer from this debilitating condition,” he concluded.

go First Person Account of Ketamine Therapy: An Interview with Kimberly Palmer

To gain insight into the experience of ketamine treatment in a person with depression and anxiety, Psychiatry Advisor interviewed Kimberly Palmer of Los Angeles, California. Ms Palmer received treatment at the Ketamine Clinics of Los Angeles (https://www.ketamineclinics.com). Ms Palmer works as a program manager for a consulting company where she organizes and runs corporate events for small groups.

Psychiatry Advisor: What made you decide to pursue ketamine treatment?

Ms Palmer: I was raised in an abusive home, and as an adult I had severe major depression, as well as anxiety. I was treated with medications, such as antidepressants, but they had many adverse events and they ended up making me feel like a zombie, so I discontinued them. I managed okay for a while, but then I had another major depressive episode.

I was receiving psychotherapy at the time and it was only moderately helpful — not enough to stop the episode. Fortunately, I knew someone who works at a ketamine clinic. She told me how many patients had been helped by ketamine and I was interested, mostly because the adverse events of ketamine seemed mild and are not long-term.

Psychiatry Advisor: What were your experiences during your infusion?

Ms Palmer: I felt incredible during the infusion. The best way I can describe it is by referring to the movie Avatar, specifically the scene in which the protagonist is walking through a jungle at night for the first time and touching all the plants, which light up with pretty colors—very vivid, colorful, and not linear. There was the sensation of being on a sort of roller coaster, riding through different scenes.

At one point, it felt as though my chair was on a cloud. Then suddenly, the chair disappeared and I was floating on the cloud. It was a wonderful experience.

Psychiatry Advisor: How did the ketamine treatment affect you afterwards?

Ms Palmer: After only one treatment, it was as if a switch had flipped in my brain that allowed me to digest things and move beyond my trauma. Before the infusion, a lot of what was going on with me had to do with self-esteem issues and negative self-talk. These were behaviors learned over many years. After the infusion, the negative self-talk immediately disappeared. All of those thoughts — such as telling myself I am not good enough — that were preventing me from working through emotional issues, were resolved. I was able to start looking at things more objectively rather than taking them personally, and not take on responsibility for other people’s emotions and reactions.

I am currently working with a therapist and a life coach to help me feel more comfortable with communication because I was raised not to ask for things and to put up with anything I’m asked to do. As a result, I have developed a much more positive outlook of myself and the world.

Psychiatry Advisor: How many ketamine treatments have you had?

Ms Palmer: Over a 6-month period I had 6 treatments, which were all very helpful. Then, 6 months after the conclusion of this first series of treatments, some new issues came up, so I received 2 more — one regular 60-minute treatment and one extended 90-minute treatment.

Recently, with the holidays coming up, I decided to pre-empt the effect of some stressors and have another treatment. My most recent infusion took place the day after my father passed away. I noticed that during the infusion, I was able to steer myself away from negative thoughts about that issue. Although I cannot control what visions or experiences I might have, I do have some control over the direction of my thoughts and the after-effects have been positive and helpful.

Psychiatry Advisor: Did you have any adverse events from the treatments?

Ms Palmer: I had no negative physical effects. I had one mild bad reaction, when I came to the treatment session in an agitated state because I had gotten into a fight with someone right before. I was sad and crying  by the time I finished the infusion. But I was in a bad headspace before I even walked into the room. And my experience was not scary, only sad.

Psychiatry Advisor: What impact has your treatment had on your day-to-day life?

Ms Palmer: My depression had interrupted my schooling. I was in school for 3 and a half years and then I hit a roadblock. After the treatments, I was able to complete my studies and graduated with a BA in business administration and management.

My job is stressful. I counterbalance the stress with hobbies like surfing and photography. But there are still stressors, and I have a dog who is reaching the end of life, which is affecting me. The ketamine treatments have helped me to manage those stressors. 

References

  1. Sanacora G, Frye MA, McDonald W, et al. A consensus statement on the use of ketamine in the treatment of mood disordersJAMA Psychiatry. 2017;74(4):399-405.
  2. Feder A, Parides M, Murrough JW, et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trialJAMA Psychiatry. 2014;71(6):681-688.
  3. Murrough JW, Soleimani L, DeWilde KE, et al. Ketamine for rapid reduction of suicidal ideation: a randomized controlled trialPsychol Med. 2015;45(16):3571-3580.
  4. Wilkinson ST, Ballard ED, Bloch MH, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysisAm J Psychiatry. 2018;175(2):150-158.
  5. Schwartz J, Murrough JW, Iosifescu DV. Ketamine for treatment-resistant depression: recent developments and clinical applicationsEvid Based Ment Health. 2016;19(2):35-38.
  6. Shadli SM, Kawe T, Martin D, McNaughton N, Neehoff S, Glue P. Ketamine effects on EEG during therapy of treatment-resistant generalized anxiety and social anxiety [published online April 24,2018]. Int J Neuropsychopharmacology. doi:10.1093/ijnp/pyy032
  7. Glue P, Medlicott NJ, Harland S, et al. Ketamine’s dose-related effects on anxiety symptoms in patients with treatment refractory anxiety disorders. J Psychopharmacol. 2017;31(10):1302-1305.
  8. Glue P, Neehoff SM, Medlicott NJ, Gray A, Kibby G, McNaughton N. Safety and efficacy of maintenance ketamine treatment in patients with treatment-refractory generalised anxiety and social anxiety disordersJ Psychopharmacol. 2018;32(6):663-667.
  9. Ionescu DF, Luckenbaugh DA, Niciu MJ, Richards EM, Zarate CA. A single infusion of ketamine improves depression scores in patients with anxious bipolar depressionBipolar Disord. 2014;17(4):438-443.
  10. Bloch MH, Wasylink S, Landeros-Weisenberger A, et al. Effects of ketamine in treatment-refractory obsessive-compulsive disorderBiol Psychiatry. 2012;72(11):964-970.
  11. Rodriguez CI, Kegeles LS, Levinson A, et al. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology. 2013;38(12):2475-2483.
  12. Girgenti MJ, Ghosal S, LoPresto D, Taylor JR, Duman RS. Ketamine accelerates fear extinction via mTORC1 signalingNeurobiol Dis. 2016;100:1-8.
  13. Ito W, Erisir A, Morozov AObservation of distressed conspecific as a model of emotional trauma generates silent synapses in the prefrontal-amygdala pathway and enhances fear learning, but ketamine abolishes those effects. Neuropsychopharmacology. 2015; 40(11):2536-2545.
  14. Fattore L, Piva A, Zanda MT, Fumagalli G, Chiamulera C. Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketaminePsychopharmacology (Berl). 2018;235(2):433-445.
  15. Donoghue AC, Roback MG, Cullen KR. Remission from behavioral dysregulation in a child with PTSD after receiving procedural ketaminePediatrics. 2015;136(3):e694-e696.
  16. Li L, Vlisides PE. Ketamine: 50 years of modulating the mindFront Hum Neurosci. 2016;10:612.

Recommended For You



Ketamine Center Northern Virginia | 703-844-0184 | NOVA Health Recovery | Spravato Ketamine nasal spray Center |Alexandria, Va 22306 | Ketamine for depression and PTSD | 22304 |20176 | 703-844-0184 | 22101 | Fairfax Ketamine Infusion Center 22304 | Dr. Sendi



Call NOVA Health Recovery at 703-844-0184 for a free consultation for a Ketamine infusion. No referral needed. We offer intranasal Ketamine follow up therapy as well. Alexandria, Va 22306.

Call NOVA Health Recovery at 703-844-0184 for a free consultation for a Ketamine infusion. No referral needed. We offer intranasal Ketamine follow up therapy as well. Alexandria, Va 22306.

VA to offer new ketamine-based nasal spray to help combat depression

The newest FDA-approved medication to treat severe depression, a nasal spray based on the anesthetic (and misused hallucinogenic party drug) ketamine, will soon be available to veterans treated within the Department of Veterans Affairs.

In a move that may help thousands of former service members with depression that has not improved with other treatments, VA officials announced Tuesday that the department’s doctors are now authorized to prescribe Spravato, the brand name for esketamine, a molecular variation of ketamine.

The decision to offer a drug hailed by many as a breakthrough in treatment for its speedy results — often relieving symptoms in hours and days, not weeks — shows the VA’s “commitment to seek new ways to provide the best health care available for our nation’s veterans,” Secretary Robert Wilkie said in a release.

“We’re pleased to be able to expand options for Veterans with depression who have not responded to other treatments,” Wilkie added.

The treatment will be available to veterans based on a physician’s assessment and only will be administered to patients who have tried at least two antidepressant medications and continue to have symptoms of major depressive disorder.

An estimated 16 million Americans have had at least one major episode of depression, and of those, 1 in 3 are considered treatment-resistant. In the veteran population of 20 million, the estimated diagnosis rate of depression is 14 percent — up to 2.8 million veterans. Between one-third and half of those veterans may be treatment-resistant.

The lack of effective medications for difficult-to-treat patients prompted the Food and Drug Administration to place esketamine on a fast track, expediting its review of the drug to ensure that it went to patent as soon as safely possible, according to administration officials.

“Controlled clinical trials that studied the safety and efficacy of this drug, along with careful review through the FDA’s drug approval process, including a robust discussion with our external advisory committees, were important in our decision to approve this treatment,” said Dr. Tiffany Farchione, acting director of the FDA’s Center for Drug Evaluation and Research Division of Psychiatry Products, in a release.

As with any other medication, there are risks. Spravato carries a boxed warning for side effects that include misuse, the reason it is administered under a doctor’s supervision. The list of side effects includes sedation and blood pressure spikes and disassociation, such as feelings of physical paralysis and out-of-body experiences. It also can cause suicidal thoughts and behaviors.

Acknowledging the dangers, FDA made esketamine available only through a restricted distribution system.

A veteran prescribed Spravato would inhale the nasal spray at a medical facility while under supervision of a medical provider, and would be monitored for at least two hours after receiving the dose. A typical prescription includes twice-weekly doses the first month, followed by a single dose weekly or biweekly as needed. Spravato cannot be dispensed for home use.

Spravato is made by Janssen Pharmaceuticals, a subsidiary of Johnson & Johnson. It is the first major antidepressant medication to hit the market in 30 years.



KETAMINE INFUSION CENTER VIRGINIA| 703-844-0184 | NOVA HEALTH RECOVERY | ARLINGTON, VA 22101 | ESKETAMINE PROVIDER VIRGINIA | ESKETAMINE CENTER | ESKETAMINE DOCTOR | 703-844-0184 | ARLINGTON, VIRGINIA 22207 22213 | NASAL SPRAY KETAMINE AND THE FDA APPROVAL| DR. SENDI | ESKETAMINE PROVIDER | NASAL SPRY KETAMINE THERAPY | KETAMINE FOR TREATMENT OF DEPRESSION, PTSD, ANXIETY | KETAMINE INFUSION CENTER | KETAMINE DEPRESSION | KETAMINE PTSD | EMAIL@NOVAHEALTHRECOVERY.COM | 2220 22182 23103 22039 20197 20184 22101 22102 22066 | CBD DOCTOR CBD CENTER | 703-844-0184 | FAIRFAX, VA 22034 | 22308 | ESKETAMINE LOUDON COUNTY, VA | ESKETAMINE ANNANDALE, VA | ESKETAMINE RICHMOND | ESKETAMINE VIRGINIA | KETAMINE SPRAY PROVIDER IN NORTHERN VIRGINIA 22308 | KETAMINE INFUSION CENTER | KETAMINE VIRGINIA | ESKETAMINE VIRGINIA | 703-844-0184 FOR AN APPOINTMENT | CBD PROVIDER | CBD CENTER | CBD VIRGINIA | DR. SENDI | NORTHERN VIRGINIA KETAMINE | KETAMINE CENTER

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link New depression drug related to ketamine recommended by FDA panel An experimental nasal spray, which has a compound similar to the“club drug” ketamine, has been recommended as a new depression treatment by an advisory panel to the Food and Drug Administration Tuesday. The influential panel voted 14-2 in favor of Johnson & Johnson’s drug esketamine, a treatment developed to treat major depression in patients who have not benefited from at least two different therapies. The panel said the benefits of the nasal spray outweighed the risks. Side effects include dizziness, nausea and an unpleasant feeling of dissociation, according to the company. One member in the panel abstained from voting. Esketamine is a variation of the anesthetic ketamine, which is also abused as a recreational party drug with the street name Special K. Intravenous infusions of ketamine have been shown to help people with severe depression who experience suicidal thoughts, but the researchers expect that the nasal spray will take effect more quickly and be easier to use. “I think esketamine has the potential to be a game-changer in the treatment of depression … I use the term potential because the issues of cost and patient accessibility need to be addressed,” said Walter Dunn, a panel member who voted in favor of the approval The nasal spray acts quickly, showing benefits after four hours. The hope is that the spray can help the 30 percent to 40 percent of patients with major depression who don’t respond to antidepressants, most of which take at least four weeks to take effect. Currently, Eli Lilly’s Symbyax is the only FDA-approved drug for treatment-resistant depression. Major depressive disorder affects over 300 million people globally, and the rate of attempted suicides in people with this condition is about 20-fold higher than that of the general population, according to the company. However, depression is a tricky area of development. Patients in clinical trials often show a big placebo response, masking the efficacy of the drug being tested. The FDA, although not mandated to follow the panel’s recommendation, is expected to announce its decision on esketamine by March 4 blob:https://www.nbcnews.com/7ff5f695-0a1d-45c4-95f5-12627211ac08 New depression drug related to ketamine recommended by FDA panel An experimental nasal spray, which has a compound similar to the“club drug” ketamine, has been recommended as a new depression treatment by an advisory panel to the Food and Drug Administration Tuesday. The influential panel voted 14-2 in favor of Johnson & Johnson’s drug esketamine, a treatment developed to treat major depression in patients who have not benefited from at least two different therapies. The panel said the benefits of the nasal spray outweighed the risks. Side effects include dizziness, nausea and an unpleasant feeling of dissociation, according to the company. One member in the panel abstained from voting. Esketamine is a variation of the anesthetic ketamine, which is also abused as a recreational party drug with the street name Special K. Intravenous infusions of ketamine have been shown to help people with severe depression who experience suicidal thoughts, but the researchers expect that the nasal spray will take effect more quickly and be easier to use. “I think esketamine has the potential to be a game-changer in the treatment of depression … I use the term potential because the issues of cost and patient accessibility need to be addressed,” said Walter Dunn, a panel member who voted in favor of the approval The nasal spray acts quickly, showing benefits after four hours. The hope is that the spray can help the 30 percent to 40 percent of patients with major depression who don’t respond to antidepressants, most of which take at least four weeks to take effect. Currently, Eli Lilly’s Symbyax is the only FDA-approved drug for treatment-resistant depression. Major depressive disorder affects over 300 million people globally, and the rate of attempted suicides in people with this condition is about 20-fold higher than that of the general population, according to the company. However, depression is a tricky area of development. Patients in clinical trials often show a big placebo response, masking the efficacy of the drug being tested. The FDA, although not mandated to follow the panel’s recommendation, is expected to announce its decision on esketamine by March 4 blob:https://www.nbcnews.com/7ff5f695-0a1d-45c4-95f5-12627211ac08

Ketamine for PTSD | IV Ketamine | Ketamine treatment | 703-844-0184 | Alexandria, Va 22304 | NOVA Health Recovery | PTSD treatment with Ketamine | New depression treatment | Intranasal Ketamine Center | CBD Doctor | 22201 | Suboxone treatment | Addiction Treatment Center



NOVA Health Recovery Ketamine Treatment Center | Alexandria, Va 22306 | 703-844-0184 | Call for an appointment for intranasal or IV Ketamine for Depression | PTSD

VA uses ketamine to treat PTSD effectively

The San Francisco Veterans Affairs Medical Center is administering ketamine to veterans with post-traumatic stress disorder and depression.

Tobias Marton, the director of the ketamine infusion program at the center, said that since the program first launched two years ago, they have treated about 40 patients who had virtually exhausted all other options.

“They’ve done everything we’ve asked them to do and they remain with very severe symptoms and with a poor or impaired quality of life,” he said. “Despite (past treatments), there remains a high risk of suicide (with some veterans).”

While it was not clear where the 40 patients are from, the option is something that is available to Humboldt County veterans who are suffering from PTSD or depression.

Marton said that in general, about a third of people diagnosed with depression don’t respond to first, second and third lines of treatment.

In contrast, ketamine infusion has yielded “impressive outcomes.”

Many people know of ketamine as a party drug, often referred to as Special K, but it is mainly used medically for anesthesia or pain treatment.

Miracle of medicine

“We know ketamine has rapid and powerful anti-suicide properties,” he said. “To have another tool, a potentially powerful tool to have an impact on suicide rates is really exciting.”

While Marton is proceeding with “cautious optimism,” Boris Nikolov, the CEO of Neurosciences Medical Clinic in Miami, Florida, which has a ketamine clinic, believes the application might be a medical breakthrough.

It’s one of the greatest discoveries in the field of depression,” he said. “This is one of the miracles in medicine.

Nikolov’s clinic has treated 120 patients with ketamine, including his wife who has PTSD as a result of severe child abuse.

“Ketamine really helped her,” he said. “That was a really big part of her recovery.”

Nikolov said most medicines that treat depression take from two to four weeks to start working. Ketamine begins working within hours after it is administered, a process which usually involves an IV infusion over the course of about an hour.

“What’s most important is the strong and fast effect of ketamine in patients who are very seriously depressed, or want to hurt themselves,” he said. “When they finish treatment, they’re totally different people. There is no other medication that does that.”

Brad Burge, the director of strategic communication at the Multidisciplinary Association for Psychedelic Studies, or MAPS, said there has been “an explosion of treatment that’s outpaced research.”

“It means that people are going to have another option, an alternative to conventional medications,” he said.

According to Burge, MAPS believes the best form of ketamine infusion involves pairing with other forms of psychotherapy such as group or individual counseling.

Ketamine availability

While ketamine is an FDA-approved drug which has been used as an anesthetic as well as a pain reliever, it isn’t officially sanctioned by the FDA to be used for treating mental health disorders. However, Marton said that ketamine has been administered in this fashion for over 18 years now.

A company is currently in the process of trying to get an intranasal product approved by the FDA which would administer ketamine through the nasal passage, according to Marton. He expects the FDA’s decision to be announced sometime around March 2019.

If the product is approved, he said, VA clinics in rural communities like the one in Eureka would likely be able to start offering ketamine treatments as well.

For now, only the location in San Francisco is able to offer the treatment, but Marton said anyone within their service realm, which includes Humboldt County, is invited to consult with the VA about seeking treatment.

“We want to be as thoughtful as we can,” he said. “As we understand more about it … (we) might be able to start helping people who we haven’t been able to help despite throwing everything we have at them.”



Ketamine Center | 703-844-0184 | Alexandria, Va 22306 | Ketamine to treat depression and alcoholism | Intranasal Ketamine Doctors | CBD Doctors | CBD center | Ketamine and Naltrexone for alcoholism | THC Doctor | Ketamine in Fairfax, Va 22304 | Ketamine for PTSD |

Call 703-844-0184 for medical ketamine treatment for depression and alcoholism |NOVA Health Recovery


New Drug Combo Shows Promise for Treatment of Depression and Addiction

Drug Combo Shows Promise for Depression and Addiction
Ketamine Treatment for alcoholism | Call 703-844-0184 | Alexandria, Va 22306 | NOVA Health Recovery

The combination of naltrexone and ketamine can help treat both symptoms of addiction and depression, a preliminary study by Yale University researchers suggests.

Substance abuse and depression are common in many patients, and efforts to treat both conditions simultaneously have had limited success. One recent study suggested that the antidepressant effects of ketamine might blunted by administration of naltrexone, used to limit cravings of those addicted to opioid drugs and alcohol.

A preliminary study of five patients suffering from both depression and substance abuse disorders suggest that isn’t the case. The study was published Jan. 9 in the journal JAMA Psychiatry.

The results “raise the possibility that for people who have depression complicated by substance abuse disorders, the combination of ketamine and naltrexone may be a strategy to explore in the effort to optimally treat both conditions,” said senior author John Krystal, Yale’s Robert L. McNeil Jr. Professor of Translational Research; professor of psychiatry, neuroscience, and psychology; and chair of the Department of Psychiatry.

Krystal and lead author Gihyun Yoon, assistant professor of psychiatry, treated the five patients suffering from depression and alcohol use disorder with a long-lasting form of naltrexone and then administered ketamine. Four of the five responded to the first ketamine dose and all five found relief from depression after multiple doses.

The study also challenges the idea that ketamine might produce antidepressant effects by stimulating opiate receptors.

Krystal cautioned that larger studies are needed to confirm beneficial effects of the combination treatment.

Krystal and Yoon have provisional patents on the use of ketamine and naltrexone to treat comorbid depression and substance abuse.

The study was primarily funded by the U.S. Department of Veterans Affairs.

Publication: Gihyun Yoon, et al., “Association of Combined Naltrexone and Ketamine With Depressive Symptoms in a Case series of Patients With Depression and Alcohol Use Disorder,” JAMA Psychiatry, 2019; doi:10.1001/jamapsychiatry.2018.3990

At NOVA Health Recovery, we do use Ketamine and other combinations to treat Alcoholism and Opioid and Pain pill addiction using Ketamine Treatment. Dr. Sendi is Board Certified in Addiction Medicine. Call 703-844-0184 Today. Fairfax, Va 22304.



Intranasal Ketamine | 703-844-0184 | Fairfax, Va 22304 | Ketamine Treatment Center | Dr. Sendi | Ketamine for depression | Depression Treatment Center | CBD Doctor | Nasal Ketamine Provider | McLean, Va | Arlington, Va 22230 | 703-844-0184

Intranasal Ketamine for Treatment-Resistant Depression

Call 703-844-0184 For a Ketamine Treatment Evaluation | Fairfax, Va 22304

NOVA Health Recovery Ketamine Treatment Center

There is an urgent need for better medications that work quickly for treatment of major depression and bipolar disorder. The treatment should also be tolerable and work for depressed patients who have not responded to conventional treatments, ie, who have treatment-resistant depression (TRD).

Ketamine is a medication that is used intravenously for anesthesia, but multiple controlled trials have now demonstrated a rapid antidepressant response to a single intravenous infusion of ketamine. Controlled studies of regular infusions appear promising, but the need for regular IV infusions is not something that is appealing to most patients and often results in non-compliance. And, oral ketamine is extensive broken down by the liver before it can be absorbed by the body, so oral therapy is not a viable option. Therefore, the intranasal route has been investigated.

Intranasal drug delivery offers a route to the brain that bypasses problems related to gastrointestinal absorption, first-pass metabolism, and the blood-brain barrier; and the onset of therapeutic action is rapid. Intranasal medications avoid the inconvenience and discomfort of IV therapy. Intranasal medications have been used to treat migraine, acute and chronic pain, Parkinson’s disease, cognitive disorders, autism, schizophrenia, social phobia, and depression.

In a randomized, double-blind, placebo-controlled, crossover trial conducted in 20 patients with major depression, physicians and researchers at the Icahn School of Medicine at Mount Sinai, New York, tested the safety, tolerability, and efficacy of intranasal ketamine in patients with depression who had failed at least one prior antidepressant trial. The researchers found that a single intranasal dose of ketamine (50 mg) outperformed placebo; the response rate was 44% versus 6%, respectively. Anxiety ratings also decreased significantly more with ketamine. Patients showed significant improvement in depressive symptoms at 24 hours after ketamine compared to placebo. Intranasal ketamine was well tolerated with minimal psychotomimetic or dissociative effects and was not associated with clinically significant changes in hemodynamic parameters like blood pressure.

Intranasal ketamine represents a promising advance in treatment-resistant depression (TRD) therapeutics. Most studies report a duration of response up to 7 days and remission up to 3-5 days after a single dose. “Most adverse events … subsided spontaneously by 60 to 90 minutes post dose,” said Vanina Popova, MD. In addition, “there was no pushback” to the nasal delivery system. “The route of administration was well received, and it was certainly more convenient than intravenous administration,” she said.

Intranasal ketamine is not commercially available, but the clinical use of intranasal ketamine is increasing internationally. Research has concluded that the drug formulation, the delivery device, the technique and individual patient factors play an important role in tolerability and efficacy when using intranasal ketamine for Treatment Resistant Depression.

Intranasal ketamine has been reported in studies to help depressed patients who have not responded to conventional therapy with minimal side effects. Ask our pharmacist for more information about compounded intranasal ketamine. We customize medications to meet each patient’s specific needs.

NOVA Health Recovery Ketamine Treatment Center | 703-844-0184 | Alexandria, Va 22306

References:
Depress Anxiety. 2016 Aug;33(8):698-710. 
Gen Hosp Psychiatry. 2015;37(2):178–184. 
J Clin Psychiatry. 2015 May;76(5):e628-31. 
Biol Psychiatry. 2014 Dec 15;76(12):970-6. 
American Psychiatric Association (APA) 2018. Abstracts P7-065 and P8-054, presented May 8, 2018.
Psychiatry Clin Neurosci. 2018 May 10. 
J Clin Psychiatry. 2017 Jun;78(6):e674-e677. 
CNS Drugs. 2018 May 7. [Epub ahead of print]
J Psychopharmacol. 2018 Apr;32(4):397-407.

Ketamine 25mg – 100 mg Nasal Spray

BACKGROUND: The N-methyl-D-aspartate glutamate receptor antagonist ketamine, delivered via an intravenous route, has shown rapid antidepressant effects in patients with treatment-resistant depression. The current study was designed to test the safety, tolerability, and efficacy of intranasal ketamine in patients with depression who had failed at least one prior antidepressant trial.
METHODS: In a randomized, double-blind, crossover study, 20 patients with major depression were randomly assigned, and 18 completed 2 treatment days with intranasal ketamine hydrochloride (50 mg) or saline solution. The primary efficacy outcome measure was change in depression severity 24 hours after ketamine or placebo, measured using the Montgomery-Åsberg Depression Rating Scale. Secondary outcomes included persistence of benefit, changes in self-reports of depression, changes in anxiety, and proportion of responders. Potential psychotomimetic, dissociative, hemodynamic, and general adverse effects associated with ketamine were also measured.
RESULTS: Patients showed significant improvement in depressive symptoms at 24 hours after ketamine compared to placebo (t = 4.39, p < .001; estimated mean Montgomery-Åsberg Depression Rating Scale score difference of 7.6 ± 3.7; 95% confidence interval, 3.9-11.3). Response criteria were met by 8 of 18 patients (44%) 24 hours after ketamine administration compared with 1 of 18 (6%) after placebo (p = .033). Intranasal ketamine was well tolerated with minimal psychotomimetic or dissociative effects and was not associated with clinically significant changes in hemodynamic parameters.
CONCLUSIONS: This study provides the first controlled evidence for the rapid antidepressant effects of intranasal ketamine. Treatment was associated with minimal adverse effects. If replicated, these findings may lead to novel approaches to the pharmacologic treatment of patients with major depression

Intranasal Ketamine | 703-844-0184 | Ketamine Treatment Provider | Alexandria, Va 22306 | Loudon, Va | Ketamine for depression | What is Ketamine? | Psychedelics for depression | Ketamine for opioid use disorder | Ketamine doctor | Loudon, Va 22043 22046 22101 22102 22107 22108 22109 | IV Ketamine for depression | Ketamine for PTSD , OCD | Bipolar | Ketamine Infusion Center | 703-844-0184 | Loudon, Va | Ketamine IV Treatment Center | Ketamine Doctor | Intranasal Ketamine |Alexandria, Va 22306 | Ketamine for Depression | Intranasal Ketamine | OCD| CBD Center | Medical CBD | Medical THC Center | THC Doctor | Ketamine for Alcoholism | Intranasal Ketamine | 22043 22046 22101 22102 22106 22107 22108 22109 20175 20176 20147 20148 20151 22030 22031 22032 22034 22038 | IV Vitamin Therapy

 

703-844-0184 | Ketamine Treatment Provider | Alexandria, Va 22306

 

 

What are the uses of ketamine?

Ketamine is a medication that is used to induce loss of consciousness, or anesthesia. It can produce relaxation and relieve pain in humans and animals.

It is a class III scheduled drug and is approved for use in hospitals and other medical settings as an anesthetic.

However, it is also a commonly abused “recreational” drug, due to its hallucinogenic, tranquilizing and dissociative effects.

Controversy has arisen about using ketamine “off-label” to treat depression. Off-label uses of drugs are uses that are not approved by the the United States, (U.S.) Food and Drug Administration (FDA).

Ketamine is safe to use in controled, medical practice, but it has abuse potential. Used outside the approved limits, its adverse mental and physical health effects can be hazardous. Prolonged use can lead to tolerance and psychological addiction.

Fast facts on ketamine:Here are some key points about ketamine. More detail is in the main article.

  • Ketamine is similar in structure to phencyclidine (PCP), and it causes a trance-like state and a sense of disconnection from the environment.
  • It is the most widely used anesthetic in veterinary medicine and is used for some surgical procedures in humans.
  • It is considered a “club drug,” like ecstasy, and it has been abused as a date-rape drug.
  • Ketamine should only be used as prescribed by a doctor.

 

What is ketamine?

ketamine and dissociation
703-844-0184 | Ketamine Treatment Center | Fairfax, Va 22304

Ketamine can produce feelings of dissociation when used as a drug of abuse.

Ketamine belongs to a class of drugs known as dissociative anesthetics. It is also known as Ketalar, Ketanest, and Ketaset.

Other drugs in this category include the hallucinogen, phencyclidine (PCP), dextromethorphan (DXM), and nitrous oxide, or laughing gas.

These types of drugs can make a person feel detached from sensations and surroundings, as if they are floating outside their body.

 

Therapeutic uses

Ketamine is most often used in veterinary medicine. In humans, it can induce and maintain general anesthesia before, during, and after surgery.

For medical purposes, ketamine is either injected into a muscle or given through an intravenous (IV) line.

It is considered safe as an anesthetic, because it does not reduce blood pressure or lower the breathing rate.

The fact that it does not need an electricity supply, oxygen, or highly trained staff makes it a suitable option in less wealthy countries and in disaster zones.

In human medical practice, it is used in procedures such as:

  • cardiac catheterization
  • skin grafts
  • orthopedic procedures
  • diagnostic procedures on the eye, ear, nose, and throat
  • minor surgical interventions, such as dental extractions

It has been used in a hospital setting to control seizures in patients with status epilepticus (SE), a type of epilepsy that can lead to brain damage and death. However, researchers point out that ketamine is normally used for this purpose after 5 to 6 other options have proven ineffective. Ketamine for the treatment of refractory status epilepticus

It is also an analgesic, and, in lower doses, it can relieve pain.

In 2014, researchers found that a ketamine infusion significantly reduced symptoms of post-traumatic stress disorder (PTSD) in 41 patients who had undergone a range of traumas.

Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder

Researchers are looking into other possible medical uses of ketamine, particularly in the areas of treatment-resistant depression, suicide prevention, and substance use disorders. However, this use is controversial.

 

Treating depression

Researchers for the American Psychological Association (APA) noted in April 2017 that a number of doctors prescribe ketamine “off-label,” for people with treatment-resistant depression.

However, they caution:

While ketamine may be beneficial to some patients with mood disorders, it is important to consider the limitations of the available data and the potential risk associated with the drug when considering the treatment option.”

The FDA has not yet approved it for treating depression.

In a study published in BMC Medical Ethics, researchers urge doctors to “minimize the risk to patients” by considering carefully the evidence before prescribing ketamine off-label for patients to treat depression and prevent suicide.

Citing “questionable practice” regarding the prescription of ketamine, they point out that there is not enough evidence to prove that ketamine is safe, and that some studies supporting its use have not been sufficiently rigorous in terms of research ethics.

They call for open debate, more research, and for doctors to try all other options first, before prescribing ketamine.

The National Institutes of Health (NIH) are currently supporting research into whether ketamine may help people with treatment-resistant depression.

 

Effects

Ketamine use can have a wide variety of adverse effects, including:

  • drowsiness
  • changes in perceptions of color or sound
  • hallucinations, confusion, and delirium
  • dissociation from body or identity
  • agitation
  • difficulty thinking or learning
  • nausea
  • dilated pupils and changes in eyesight
  • inability to control eye movements
  • involuntary muscle movements and muscle stiffness
  • slurred speech
  • numbness
  • amnesia
  • slow heart beat
  • behavioral changes
  • increased pressure in the eyes and brain

It can also lead to a loss of appetite, upset stomach, and vomiting.

When used as an anesthetic in humans, doctors combine it with another drug to prevent hallucinations.

Risks

Ketamine is considered relatively safe in medical settings, because it does not affect the protective airway reflexes, and it does not depress the circulatory system, as other anesthetic medications do.

However, some patients have reported disturbing sensations when awakening from ketamine anesthesia.

Ketamine can cause an increase in blood pressure and intracranial pressure, or pressure in the brain.

People with the following conditions cannot receive ketamine for medical purposes:

  • brain swelling
  • glaucoma
  • brain lesion or tumor

It is used with caution in those with:

  • coronary artery disease
  • increased blood pressure
  • thyroid disease
  • chronic alcohol addiction
  • acute alcohol intoxication
  • aneurysm
  • chest pain
  • mental illness

These effects may be stronger in people aged over 65 years.

Some people may have an allergy to the ingredients. Patients with any type of allergy should tell their doctor before using any medication.

Anyone who is using this drug for therapeutic purposes on a regular basis should have regular blood pressure checks.

As a drug of abuse

Ketamine is most often used in the dance club setting as a party drug. It produces an abrupt high that lasts for about an hour. Users report euphoria, along with feelings of floating and other “out of body” sensations. Hallucinations, similar to those experienced with LSD, are common.

In 2014, 1.4 percent of 12th graders reported using ketamine for recreational purposes. This was down from 2002, when 2.6 percent reported using it.

Street names include:

  • Cat Valium
  • KitKat
  • Special K
  • Vitamin K
  • The horse tranquilizer
  • Ket
  • Purple
  • Super K
  • Jet

It is taken orally as a pill, snorted, smoked with tobacco or marijuana, or mixed into drinks. Most often, it is cooked into a white powder for snorting. Taken orally, it can cause severe nausea and vomiting.

Regardless of how it is ingested, its effects begin within a few minutes and last for less than an hour.

Higher doses can produce more intense effects known as being in the “K-hole,” where users become unable to move or communicate and feel very far away from their body.

Some users seek out this type of transcendental experience, while others find it terrifying and consider it an adverse effect.

Adverse effects

Unwanted effects include:

  • addiction
  • psychosis
  • amnesia
  • impaired motor function
  • high blood pressure
  • respiratory problems
  • seizures

As the user can become oblivious to their environment, ketamine abuse puts the person at risk of accidental injury to themselves and vulnerable to assault by others.

Problems with co-ordination, judgment, and the physical senses can continue for up to 24 hours. If an individual is using ketamine in a recreational setting, a sober friend should remain with them to ensure their safety.

Long-term effects include bladder and kidney problems, stomach pain, and memory loss.

If addiction and dependence develop, there is also a risk of depression.

Frequent, illegal use of ketamine can lead to serious mental disorders and major physical harm to the bladder, known as ketamine-induced ulcerative cystitis.

Ketamine and alcohol

Ketamine toxicity alone is unlikely to lead to death, according to the WHO. However, combining it with other substances, such as alcohol, can increase the sedative effects, possibly leading to a fatal overdose.

In the U.S., 1,550 emergency department (ED) visits were due to illegal ketamine use, and 71.5 percent of these also involved alcohol.

Overdose

The risk of overdose is high, because, for a recreational user, there is only a slight difference in dosage between obtaining the drug’s desired effects and an overdose.

Addiction

Ketamine is a Class III controlled substance. Prolonged use can cause dependence, tolerance, and withdrawal symptoms. Quitting can lead to depression, anxiety, insomnia, and flashbacks.

Chronic users have been known to “binge” their ketamine use in an attempt to experience again the dissociative, euphoric effects of their early first use.

The complications of long-term use can be fatal.

A final word

Ketamine is an anesthetic drug, used in human and veterinary medicine. It is important to distinguish the valid medical uses from the non-medical, recreational use of the drug.

When properly administered by a trained medical professional, ketamine is a safe and valuable medication.

Used in recreational settings, however, ketamine abuse can produce unpredictable physical and mental health results. In the long term, it can lead to psychological damage and, in some cases, death.

Any drug use should be prescribed by a doctor who knows the patient’s full medical history.

Intranasal Ketamine | 703-844-0184 | Ketamine Treatment Provider | Fairfax, Va 22306| Ketamine for deprssion | Ketamine doctor | Loudon, Va 22043 22046 22101 22102 22107 22108 22109 | IV Ketamine for depression | Ketamine for PTSD , OCD | Bipolar | Ketamine Infusion Center | 703-844-0184 | Loudon, Va | Ketamine IV Treatment Center | Ketamine Doctor | Intranasal Ketamine |Alexandria, Va 22306 | Ketamine for Depression | Intranasal Ketamine | OCD| CBD Center | Medical CBD | Medical THC Center | THC Doctor | Ketamine for Alcoholism | Intranasal Ketamine | 22043 22046 22101 22102 22106 22107 22108 22109 20175 20176 20147 20148 20151 22030 22031 22032 22034 22038 | IV Vitamin Therapy

703-844-0184 | NOVA health Recovery Ketamine Treatment Center | Alexandria, Va 22306 | email@novahealthrecovery.com

 

Image result for intranasal ketamine | Ketamine for depression | Ketamine doctor |
Ketamine Infusion Center | 703-844-0184 | Loudon, Va | Ketamine IV Treatment Center | Ketamine Doctor | Intranasal Ketamine |Alexandria, Va 22306 | Ketamine for Depression | Intranasal Ketamine | OCD| CBD Center | Medical CBD | Medical THC Center | THC Doctor | Ketamine for Alcoholism | Intranasal Ketamine | 22043 22046 22101 22102 22106 22107 22108 22109 20175 20176 20147 20148 20151 22030 22031 22032 22034 22038 | IV Vitamin Therapy

 

At NOVA Health recovery [703-844-0184 | Fairfax, Va 22306 ] we offer our patients cutting-edge treatment options for their depression, and one of our main stars is IV (intravenous) ketamine. But why does it have to be IV? “I don’t like needles, why can’t I just take this as a pill or as that nasal spray everyone is talking about?” you may be thinking. IV is the best route for your brain to receive ketamine because of something called bioavailability. In addition, it is also more effective, more precise, and safer for you.

What is bioavailability? It is the amount of medication that your body and brain is actually able to use, which is sometimes different than the amount of medication that your body receives. When you take any medication, parts of the active ingredients in them don’t go to your bloodstream; they get digested, altered into an unusable form, metabolized and excreted into your body. This is particularly prevalent in oral and intranasal medications. In fact, receiving a medication intravenously is the only way to have 100% bioavailability. Let’s take a look at the different bioavailability percentages based on what route you receive ketamine:

Intravenous: 100%

Intramuscular: 93%
Intranasal: 25-50%
Sublingual (under the tongue): 30%
Orally (by mouth): 16-24%

When we give ketamine intravenously, we know exactly where your entire dose is going: straight to your brain. The same cannot be said for other forms of ketamine. Intranasal ketamine has to bypass several layers of tissue before it can reach your brain, and too many things can happen that could cause you to lose some or most of your dose: sneezing, dripping, running down the back of your throat, etc. The same can be said for an oral pill and an intramuscular injection; these routes are just too unpredictable, and when it comes to treating your depression, we don’t want the results to be unpredictable.

When you receive IV ketamine in our office setting, it is given slowly over one hour. By doing this, we are able to monitor you closely, and if you experience any unpleasant side effects and want to stop the infusion, we are able to do that. By contrast, a dose of ketamine via intranasal spray would be done at home with no physician or nursing supervision, so side effects cannot be immediately addressed if they arise. The same is true for intramuscular or oral dosing – after you take the pill, or receive a shot of ketamine into your muscle, there is no way to stop the absorption of the medication into your bloodstream as the full dose is administered within seconds.

IV ketamine is by far the safest and most effective approach in using ketamine to treat depression. You are in a comfortable setting with healthcare providers with you the whole time, the potential for side effects is low, and you are certain that the dose you receive is the dose that is going to your brain, maximizing the benefits of this cutting-edge treatment.

However, we do offer the other routes of administration and take – home prescriptions for Ketamine therapies for those who are in our program. Contact us today at 703-844-0184 to get started on your treatment.

 

KETAMINE INFUSION CENTER | 703-844-0184 | LOUDON, VA | KETAMINE IV TREATMENT CENTER | ALEXANDRIA, VA 22306 | KETAMINE FOR DEPRESSION | OCD| CBD CENTER | MEDICAL CBD | MEDICAL THC CENTER | THC DOCTOR | KETAMINE FOR ALCOHOLISM | INTRANASAL KETAMINE | 22043 22046 22101 22102 22106 22107 22108 22109 20175 20176 20147 20148 20151 22030 22031 22032 22034 22038 | IV VITAMIN THERAPY

703-844-0184 | Alexandria, Va 22306 | Ketamine Treatment | Call for an infusion | Ketamine for depression, pain, OCD, anxiety

 

Image result for GIF of alcoholic shaking

 

 

Ketamine for Delirium Tremens

This study suggests that ketamine can safely be used to avoid intubation and may decrease length of intensive care unit stay.

Severe alcohol withdrawal, or delirium tremens (DT), is a life-threatening condition that can require massive doses of benzodiazepines or barbiturates (GABA agonists), which can require intubation and prolonged intensive care unit (ICU) care. These authors studied a retrospective sample of adult patients admitted to a single ICU with DT to determine whether adjunctive therapy with ketamine improved outcomes.

They compared outcomes in 29 patients who received symptom-triggered therapy with GABA agonists with outcomes in 34 patients who were treated after initiation of a guideline that added an intravenous ketamine infusion (0.15–0.3 mg/kg/hour) to GABA agonist therapy. Using multivariable modeling that accounted for initial ethanol level and the total amount of GABA agonist required for treatment, patients who received ketamine had significantly lower rates of intubation (29% vs. 76% for patients who did not receive ketamine) and shorter ICU stay (5.7 days vs. 11.2 for patients who did not receive ketamine). There were no reported adverse events.

Adjunct Ketamine Use in the Management of Severe Ethanol Withdrawal

NOVA Health Recovery Ketamine Treatment Center

 

KETAMINE for depression and Magnesium| 703-844-0184 | Ketamine IV doctors | FAIRFAX, VA 22304 | KETAMINE FOR DEPRESSION | KETAMINE FOR ANXIETY | KETAMINE CLINIC |

NOVA Health Recovery  <<< Ketamine Treatment Center Fairfax, Virginia

CAll 703-844-0184 for an immediate appointment to evaluate you for a Ketamine infusion:

Ketaminealexandria.com    703-844-0184 Call for an infusion to treat your depression. PTSD, Anxiety, CRPS, or other pain disorder today.

email@novahealthrecovery.com  << Email for questions to the doctor

Ketamine center in Fairfax, Virginia    << Ketamine infusions

Ketamine – NOVA Ketamine facebook page – ketamine treatment for depression

facebook Ketamine page

NOVA Health Recovery  << Ketamine clinic Fairfax, Va  – Call 703-844-0184 for an appointment – Fairfax, Virginia

Ketamine Consultants Blog

Ketamine Virginia = Ketamine IV Drip Doctors

The IV Medical Center - IV Vitamin Drips for wellness and recovery


_________________________________________________________________________________________________

Magnesium is essential for our health. It is a key cofactor for our energy regulation, and in plants it is the center of the chlorphyll molecule. Low magnesium in people is associated with depression. Among the treatments we provide at the IV Medical Center is Ketamine infusions. In the process of our treatments, we assess patients for toher medical conditions that may lead to refractory depression and low magnesium is one of them.

 

 

Ketamine, an anesthetic and street drug known as “Special K” has garnered a lot of attention for it’s ability, in some, to relieve the symptoms of very severe depression in a matter of minutes. A recent study has demonstrated how it might work, but before you go signing up for a clinical trial (and there are currently many going on in the US), it’s important to understand the downsides to the drug. One major problem is that the effects wear off, usually within 10 days, leaving you just as depressed as before. It can cause urinary incontinence, bladder problems, addiction, and, with chronic use, it can worsen mental health problems, causing more depression, anxiety, and panic attacks.

Ketamine seems to have a remarkable, short term ability to heal the synapses injured by chronic stress. However, anything that acts that quickly and successfully usually has a long-term cost. All powerfully addictive drugs work on our own natural receptors and neurons. Cocaine, for example, causes immediate racing euphoria by inhibiting the natural neurotransmitter dopamine from being recycled, leaving bunches of dopamine in the synaptic cleft. In the very short term, you feel great. In the long term, you tax the system by driving the neurotransmitter system far out of balance in an aggressive way.

Nicotine has a similar effect on the alpha-7 nicotinic receptor. It activates it in a pleasing way, but unfortunately desensitizes the receptor so much that only nicotine will keep it firing. A nutrient found in foods such as egg yolks called choline activates the same receptor, but without desensitizing it.  Long term, regular ingestion of choline keeps the receptor functional and happy, helping with certain brain tasks. Long term, regular use of nicotine activates the receptor but forces you to take more nicotine to keep the receptor working, leaving you foggy-headed and less sharp if you go without cigarettes.

So is there a less dramatic, “natural” version of ketamine, something we can safely ingest every day, but might be a little depleted in our modern diets? Nothing taken in physiologic amounts would reverse a depression in half an hour like ketamine, but could another chemical we find in food and mineral water help with resilience to stress, synaptic repair, and make us more resistant to depression and anxiety symptoms? Sure—that chemical is the mineral magnesium. Magnesium, like ketamine, acts as an antagonist to the NMDA receptor, which means it is a counter to glutamate, the major excitatory neurotransmitter in the brain. The exact mechanisms are complex, but both ketamine and magnesium seem to help glutamate do its job, activating the receptor, without damaging the receptor with too much activation, which, chronically, leads to excitotoxicity, synaptic degradation, inflammation, and even cell death.

One of the exciting things about ketamine is that it works in some people with severe treatment resistant depression who have failed the traditional therapies. Treatment-resistant individuals tend to have lower intracellular magnesium levels than normal (1). Ketamine and magnesium may also work synergistically, complementing each other. Ketamine leads to an increase of intracellular magnesium, and ketamine will reverse the normally seen magnesium decreases after brain trauma (2). There is some evidence also that more standard antidepressant medications, such as imipramine, work in part by reversing the magnesium-depleting effects of chronic stress, suggesting that adding magnesium supplementation to standard antidepressant regimens might help the medications work better (at least in rodents) (3).

It’s great to see an interesting compound like ketamine be taken seriously and thoroughly studied for its action in serious, resistant depression. Ultimately its usefulness may be limited to hospitalized patients who can be closely monitored for the side effects, and who also may benefit the most from the quick mechanism of action, while the longer term risks may be outweighed by the short term benefit in such a critical, serious situation. I would love to see a much safer compound, the mineral magnesium, be studied as an adjunct treatment.

In the mean time, magnesium supplementation is generally safe for most folks with normal kidney function. Many folks eating a normal Western Diethave a low intake of the mineral (4). Those with bowel obstructions, very slow heart rate, or dangerously low blood pressure should not take it. Magnesium can interfere with the absorption of certain medicines (digoxin, nitrofurantoin, bisphosphanates, and some anti malaria drugs). Here are some excellent food sources of magnesium (though remember that both nuts and grains have phytates, which bind minerals, so the magnesium you absorb may not be quite as much as the magnesium you ingest.) Magnesium is also available in many mineral waters.

 

Lets digress over Choline. Choline has impact on decreasing schizophrenia in the children of mother’s who supplement the right amount during pregnancy:

Recently in the American Journal of Psychiatrya new paper was published tying nutrient supplementation in pregnant women to positive changes in the brains of their offspring. One of the nutrients that may be less predominant in our modern diets than in traditional diets is the phospholipid known as choline. Phospholipids are exceedingly important for brain development and neuron signaling.

In the current study, 100 pregnant women were randomized to receiving a daily choline supplement (equivalent to the amount of choline found in 3 large eggs) or placebo. After the babies were born, the choline babies continued to get a supplement equal to 100mg of choline daily (the institutes of medicine recommend total daily choline in infants to be 125mg daily), and at measurements of “cerebral inhibition” were taken at about one month and three months of age. Cerebral inhibition is a term used to describe the ability of the brain to tune out a stimulus that happens over and over. For example, if you are trying to work, and someone is running a jackhammer on the street outside, if you have intact cerebral inhibition, your brain will respond less and less to the sound of the jackhammer as it continues. Presumably this change would allow you to focus on more important things, such as the work at hand.

Source: http://www.flickr.com/photos/anniemole/5268772776/sizes/m/

In some brain disorders, such as schizophrenia, cerebral inhibition is impaired. For someone with schizophrenia, the signal from the jackhammer would be just as strong the second and the third and the seventh and the eighth times. You can imagine how you might be affected if you couldn’t tune anything out, if your brain was constantly taking in more stimulation and unable to sort through what was necessarily important or not. It could be this lack of cerebral inhibition (which begins with brain development in utero and early infancy) is one of the central causes of developing schizophrenia later on. The brain, so overwhelmed with stimuli, stops making sense of it, leading to psychosis and eventually the degeneration of neurons.

Cerebral inhibition is typically measured by a test called the p50 evoked potential. Electrodes are placed on the scalp, and then the subject is exposed to a sensory stimulus, in this case, paired sounds. With intact cerebral inhibition, the second time the brain processes the sound, the wave amplitude of the auditory evoked potential 50 milliseconds after the sound will be much less than the first time. (Go to this image from the American Journal of Psychiatry to see what the waveforms look like in healthy controls and subjects with schizophrenia.

P50 evoked potential abnormalities can be seen in infants, and genes that are associated with a higher risk of schizophrenia are also associated with these abnormal evoked potential tests. Choline is known to cross the placenta and help with the brain development of certain receptors that normalize cerebral inhibition. In the study of pregnant women receiving choline supplements, 76% of the infants whose mothers got choline had normal p50 evoked potential tests at age one month. Only 43% of the infants of the mothers who received placebo had tests consistent with intact cerebral inhibition. In addition, a gene known as CHRNA7 correlated with diminished cerebral inhibition in the placebo group of infants, but not in the choline group. That means that it is possible (though there is way too little data to know) the choline supplementation could reduce the risk of schizophrenia in these infants. The ScienceDaily write up of the study can be found here.

Schizophrenia risk is higher in the offspring of malnourished mothers. There is also a known gene that reduces choline levels that is associated with a higher risk of schizophrenia. Choline is also sequestered in the mother’s liver during trauma, anxiety, or depression, depriving the fetus. Measures of developmental delay and other developmental problems are also associated with later risk of schizophrenia.

Nicotine activates but also profoundly desensitizes the same receptor that choline seems to protect and activate (the alpha-7 nicotinic receptor). 90% of people with schizophrenia smoke, and smoking normalizes p50 evoked potential tests is schizophrenia. Smoking in mothers has been associated with poorer infant cerebral inhibition and later childhood behavioral problems, whereas choline has only been shown to be beneficial for brain development. One difference between the two compounds (among many!) is that choline does not desensitize the alpha-7 nicotinic receptor at all, leaving it active so it can play its presumed role in helping with intact cerebral inhibition.

While choline supplementation is the interest of researchers, I’m more interested in having pregnant women eat their meat and egg yolks, the best sources of choline in the diet. Egg yolks are jam packed with great nutrients for the brain, not only choline, but also B vitamins and other fatty acids important for nerve growth. Bananas also have more choline than you would expect for a fruit. Choline levels in the diet have fallen recently with folks restricting their egg and organ meat consumption. These traditional foods have some important nutrients that we don’t want to skimp on in our diets.

 

Choline supplementation during pregnancy presents a new approach to schizophrenia prevention

Choline, an essential nutrient similar to the B vitamin and found in foods such as liver, muscle meats, fish, nuts and eggs, when given as a dietary supplement in the last two trimesters of pregnancy and in early infancy, is showing a lower rate of physiological schizophrenic risk factors in infants 33 days old. The study breaks new ground both in its potentially therapeutic findings and in its strategy to target markers of schizophrenia long before the illness itself actually appears. Choline is also being studied for potential benefits in liver disease, including chronic hepatitis and cirrhosis, depression, memory loss, Alzheimer’s disease and dementia, and certain types of seizures.

Robert Freedman, MD, professor and chairman of the Department of Psychiatry, University of Colorado School of Medicine and one of the study’s authors and Editor of The American Journal of Psychiatry, points out, “Genes associated with schizophrenia are common, so prevention has to be applied to the entire population, and it has to be safe. Basic research indicates that choline supplementation during pregnancy facilitates cognitive functioning in offspring. Our finding that it ameliorates some of the pathophysiology associated with risk for schizophrenia now requires longer-term follow-up to assess whether it decreases risk for the later development of illness as well.”

Normally, the brain responds fully to an initial clicking sound but inhibits its response to a second click that follows immediately. In schizophrenia patients, deficient inhibition is common and is related to poor sensory filtering and familial transmission of schizophrenia risk. Since schizophrenia does not usually appear until adolescence, this trait — measurable in infancy — was chosen to represent the illness.

Half the healthy pregnant women in this study took 3,600 milligrams of phosphatidylcholine each morning and 2,700 milligrams each evening; the other half took placebo. After delivery, their infants received 100 milligrams of phosphatidylcholine per day or placebo. Eighty-six percent of infants exposed to pre- and postnatal choline supplementation, compared to 43% of unexposed infants, inhibited the response to repeated sounds, as measured with EEG sensors placed on the baby’s head during sleep.

 


Journal Reference:

  1. Randal G. Ross et al. Perinatal Choline Effects on Neonatal Pathophysiology Related to Later Schizophrenia RiskAmerican Journal of Psychiatry, 2013; DOI: 10.1176/appi.ajp.2012.12070940
  2. Perinatal Choline Effects on Neonatal Pathophysiology Related to Later Schizophrenia Risk

___________________________________________________________________________________________________________________________

Ketamine, magnesium and major depression–from pharmacology to pathophysiology and back.

Ketamine, magnesium and major depression e From pharmacology to pathophysiology and back

Abstract

The glutamatergic mechanism of antidepressant treatments is now in the center of research to overcome the limitations of monoamine-based approaches. There are several unresolved issues. For the action of the model compound, ketamine, NMDA-receptor block, AMPA-receptor activation and BDNF release appear to be involved in a mechanism, which leads to synaptic sprouting and strengthened synaptic connections. The link to the pathophysiology of depression is not clear. An overlooked connection is the role of magnesium, which acts as physiological NMDA-receptor antagonist: 1. There is overlap between the actions of ketamine with that of high doses of magnesium in animal models, finally leading to synaptic sprouting. 2. Magnesium and ketamine lead to synaptic strengthening, as measured by an increase in slow wave sleep in humans. 3. Pathophysiological mechanisms, which have been identified as risk factors for depression, lead to a reduction of (intracellular) magnesium. These are neuroendocrine changes (increased cortisol and aldosterone) and diabetes mellitus as well as Mg(2+) deficiency. 4. Patients with therapy refractory depression appear to have lower CNS Mg(2+) levels in comparison to health controls. 5. Experimental Mg(2+) depletion leads to depression- and anxiety like behavior in animal models. 6. Ketamine, directly or indirectly via non-NMDA glutamate receptor activation, acts to increase brain Mg(2+) levels. Similar effects have been observed with other classes of antidepressants. 7. Depressed patients with low Mg(2+) levels tend to be therapy refractory. Accordingly, administration of Mg(2+) either alone or in combination with standard antidepressants acts synergistically on depression like behavior in animal models.

CONCLUSION:

On the basis of the potential pathophysiological role of Mg(2+)-regulation, it may be possible to predict the action of ketamine and of related compounds based on Mg(2+) levels. Furthermore, screening for compounds to increase neuronal Mg(2+) concentration could be a promising instrument to identify new classes of antidepressants. Overall, any discussion of the glutamatergic system in affective disorders should consider the role of Mg(2+)

 

So back to the magnesium and Ketamine issue: As above, Low magnesium seems to be present in individuals who are depressed and have sleeping disorders. The magnesium is not the type measured by standard blood tests as most magnesium is intracellular. Magnesium may play an important role by antagomizing the NMDA receptors as does Ketamine. Our deficient diets in Magnesium may be increasing our rates of depression!

Magnesium as the original Chill Pill

Source: http://www.flickr.com/photos/derekskey/3219004793/

Magnesium is a vital nutrient that is often deficient in modern diets. Our ancient ancestors would have had a ready supply from organ meats, seafood, mineral water, and even swimming in the ocean, but modern soils can be depleted of minerals and magnesium is removed from water during routine municipal treatment. The current RDA for adults is between 320 and 420mg daily, and the average US intake is around 250mg daily.

Does it matter if we are a little bit deficient? Well, magnesium plays an important role in biochemical reactions all over your body.  It is involved in a lot of cell transport activities, in addition to helping cells make energy aerobically or anaerobically. Your bones are a major reservoir for magnesium, and magnesium is the counter-ion for calcium and potassium in muscle cells, including the heart. If your magnesium is too low, you can experience muscle cramps, arrythmias, and even sudden death. Ion regulation is everything with respect to how muscles contract and nerves send signals. In the brain, potassium and sodium balance each other. In the heart and other muscles, magnesium pulls some of the load.

That doesn’t mean that magnesium is unimportant in the brain. Au contraire!In fact, there is an intriguing article entitled Rapid recovery from major depression using magnesium treatment, published in Medical Hypothesis in 2006. Medical Hypothesis seems like a great way to get rampant (but referenced) speculation into the PubMed database. Fortunately, I don’t need to publish in Medical Hypothesis, as I can engage in such speculation in my blog, readily accessible to Google. Anyway, this article was written by George and Karen Eby, who seem to run a nutrition research facility out of an office warehouse in Austin, Texas – and it has a lot of interesting information about our essential mineral magnesium.

Magnesium is an old home remedy for all that ails you, including “anxiety, apathy, depression, headaches, insecurity, irritability, restlessness, talkativeness, and sulkiness.” In 1968, Wacker and Parisi reported that magnesium deficiency could cause depression, behavioral disturbances, headaches, muscle cramps, seizures, ataxia, psychosis, and irritability – all reversible with magnesium repletion.

Stress is the bad guy here, in addition to our woeful magnesium deficient diets. As is the case with other minerals such as zinc, stress causes us to waste our magnesium like crazy – I’ll explain a bit more about why we do that in a minute.

Let’s look at Eby’s case studies from his paper:

A 59 y/o “hypomanic-depressive male”, with a long history of treatable mild depression, developed anxiety, suicidal thoughts, and insomnia after a year of extreme personal stress and bad diet (“fast food”). Lithium and a number of antidepressants did nothing for him. 300mg magnesium glycinate (and later taurinate) was given with every meal. His sleep was immediately restored, and his anxiety and depression were greatly reduced, though he sometimes needed to wake up in the middle of the night to take a magnesium pill to keep his “feeling of wellness.” A 500mg calcium pill would cause depression within one hour, extinguished by the ingestion of 400mg magnesium.

A 23 year-old woman with a previous traumatic brain injury became depressed after extreme stress with work, a diet of fast food, “constant noise,” and poor academic performance. After one week of magnesium treatment, she became free of depression, and her short term memory and IQ returned.

A 35 year-old woman with a history of post-partum depression was pregnant with her fourth child. She took 200mg magnesium glycinate with each meal. She did not develop any complications of pregnancy and did not have depression with her fourth child, who was “healthy, full weight, and quiet.”

A 40 year-old “irritable, anxious, extremely talkative, moderately depressed” smoking, alchohol-drinkingcocaine using male took 125mg magnesium taurinate at each meal and bedtime, and found his symptoms were gone within a week, and his cravings for tobacco, cocaine, and alcoholdisappeared. His “ravenous appetite was supressed, and … beneficial weight loss ensued.”

Eby has the same question about the history of depression that I do – why is depression increasing? His answer is magnesium deficiency. Prior to the development of widespread grain refining capability, whole grains were a decent source of magnesium (though phytic acid in grains will bind minerals such as magnesium, so the amount you eat in whole grains will generally be more than the amount you absorb). Average American intake in 1905 was 400mg daily, and only 1% of Americans had depression prior to the age of 75. In 1955, white bread (nearly devoid of magnesium) was the norm, and 6% of Americans had depression before the age of 24. In addition, eating too much calcium interferes with the absorption of magnesium, setting the stage for magnesium deficiency.

Beyond Eby’s interesting set of case studies are a number of other studies linking the effects of this mineral to mental health and the stress response system. When you start to untangle the effects of magnesium in the nervous system, you touch upon nearly every single biological mechanism for depression. The epidemiological studies (1) and some controlled trials (2)(3) seem to confirm that most of us are at least moderately deficient in magnesium. The animal models are promising (4). If you have healthy kidneys, magnesium supplementation is safe and generally well-tolerated (up to a point)(5), and many of the formulations are quite inexpensive. Yet there is a woeful lack of well-designed, decent-sized randomized controlled trials for using magnesium supplementation as a treatment or even adjunctive treatment for various psychiatric disorders.

Let’s look at the mechanisms first. Magnesium hangs out in the synapse between two neurons along with calcium and glutamate. If you recall, calcium and glutamate are excitatory, and in excess, toxic. They activate the NMDA receptor. Magnesium can sit on the NMDA receptor without activating it, like a guard at the gate. Therefore, if we are deficient in magnesium, there’s no guard. Calcium and glutamate can activate the receptor like there is no tomorrow. In the long term, this damages the neurons, eventually leading to cell death. In the brain, that is not an easy situation to reverse or remedy.

And then there is the stress-diathesis model of depression, which is the generally accepted theory that chronic stress leads to excess cortisol, which eventually damages the hippocampus of the brain, leading to impaired negative feedback and thus ongoing stress and depression and neurotoxicity badness. Murck tells us that magnesium seems to act on many levels in the hormonal axis and regulation of the stress response. Magnesium can suppress the ability of the hippocampus to stimulate the ultimate release of stress hormone, it can reduce the release of ACTH (the hormone that tells your adrenal glands to get in gear and pump out that cortisol and adrenaline), and it can reduce the responsiveness of the adrenal glands to ACTH. In addition, magnesium can act at the blood brain barrier to prevent the entrance of stress hormones into the brain. All these reasons are why I call magnesium “the original chill pill.”

If the above links aren’t enough to pique your interest, depression is associated with systemic inflammation and a cell-mediated immune response. Turns out, so is magnesium deficiency. In addition, animal models show that sufficient magnesium seems to protect the brain from depression and anxiety after traumatic brain injury (6), and that the antidepressants desipramine and St. John’s Wort (hypericum perforatum) seem to protect the mice from the toxic effects of magnesium deficiency and its relationship to anxious and depressed behaviors (4).

The overall levels of magnesium in the body are hard to measure. Most of our body’s magnesium is stored in the bones, the rest in the cells, and a very small amount is roaming free in the blood. One would speculate that various mechanisms would allow us to recover some needed magnesium from the intracellular space or the bones if we had plenty on hand, which most of us probably don’t. Serum levels may be nearly useless in telling us about our full-body magnesium availability, and studies of levels and depression, schizophrenia, PMS, and anxiety have been all over the place (7). There is some observational evidence that the Mg to Ca ratio may be a better clue. Secondly, the best sources of magnesium in the normal Western diet are whole grains (though again, phytates in grains will interfere with absorption), beans, leafy green veggies, and nuts. These happen to be some of the same sources as folate, and folate depletion is linked with depression, so it may be a confounding factor in the epidemiological studies.

Finally, magnesium is sequestered and wasted via the urine in times of stress. I’m speculating here, but in a hunter-gatherer immediate stress sort of situation, maybe we needed our neurons to fire on all cylinders and our stress hormones to rock and roll through the body in order for us to survive. Presumably we survived or didn’t, and then the stressor was removed, and our paleolithic diets had plenty of magnesium to replace that which went missing. However, it may not be overall magnesium deficiency causing depression and exaggerated stress response – it may just be all that chronic stress, and magnesium deficiency is a biomarker for chronic stress. But it doesn’t hurt to replete one’s magnesium to face the modern world, and at least the relationships should be studied thoroughly. Depression is hugely expensive and debilitating. If we could alleviate some of that burden with enough mineral water… we should know whether that is a reasonable proposition.

As I mentioned before, there are only a few controlled trials of magnesium supplementation and psychiatric disorders. A couple covered premenstrual dysphoria, cravings, and other symptoms (8)(9). Another small study showed some improvement with magnesium supplementation in chronic fatigue syndrome (10). Two open-label studies showed some benefit in mania (11)(12). There is another paper that postulates that magnesium deficiency could exacerbate the symptoms of schizophrenia. However, there is nothing definitive. Which is, of course, quite troubling. How many billions of dollars have we spent on drug research for depression, bipolar disorder, and schizophrenia, when here is a cheap and plausibly helpful natural remedy that hasn’t been properly studied?

So everyone get out there and take some magnesium already!  Whew.  Well, just a few more things to keep in mind before you jump in.

There are some safety considerations with respect to magnesium supplementation. If you have normal kidney function, you do not have myasthenia gravis, bowel obstruction, or bradycardia, you should be able to supplement without too many worries. In addition, magnesium interferes with the absorption of certain pharmaceuticals, including dixogin, nitrofurantoin, bisphosphanates, and some antimalaria drugs. Magnesium can reduce the efficacy of chloropromazine, oral anticoagnulants, and the quinolone and tetracycline classes of antibiotics.

Magnesium oxide is the cheapest readily available formulation, as well as magnesium citrate, which is more likely to cause diarrhea in excess. (In fact, magnesium is a great remedy for constipation). The oxide is not particularly bioavailable, but the studies I’ve referenced above suggest that you can top yourself off after about a month of daily supplementation. Those with short bowels (typically due to surgery that removes a large section of bowel) may want to supplement instead with magnesium oil. You can also put some Epsom salts in your bath. In addition to diarrhea, magnesium can cause sedation, and symptoms of magnesium toxicity (again, quite unlikely if your kidneys are in good shape) are low blood pressure, confusion, arrythmia, muscle weakness, and fatigue. Magnesium is taken up by the same transporter as calcium and zinc, so they can fight with each other for absorption. Jaminet and Jaminet recommend total daily levels (between food and supplements) of 400-800mg. Most people can safely supplement with 200-350mg daily without any problems (again, don’t proceed without a doctor’s supervision if you have known kidney disease or if you are elderly).

People looking for good (but not all paleo) food sources can go here (also a good link for more information on the other formulations of magnesium – there are many!), here, and here.

 

Following are some foods and the amount of magnesium in them:[23]

 

MAGNESIUM  

Magnesium Webpage as below

 

Summary

Magnesium plays important roles in the structure and the function of the human body. The adult human body contains about 25 grams of magnesium. Over 60% of all the magnesium in the body is found in the skeleton, about 27% is found in muscle, 6% to 7% is found in other cells, and less than 1% is found outside of cells (1).

Function

Magnesium is involved in more than 300 essential metabolic reactions, some of which are discussed below (2).

Energy production

The metabolism of carbohydrates and fats to produce energy requires numerous magnesium-dependent chemical reactions. Magnesium is required by the adenosine triphosphate (ATP)-synthesizing protein in mitochondria. ATP, the molecule that provides energy for almost all metabolic processes, exists primarily as a complex with magnesium (MgATP)(3).

Synthesis of essential molecules

Magnesium is required for a number of steps during synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins. Several enzymes participating in the synthesis of carbohydrates and lipids require magnesium for their activity. Glutathione, an important antioxidant, requires magnesium for its synthesis (3).

Structural roles

Magnesium plays a structural role in bone, cell membranes, and chromosomes (3).

Ion transport across cell membranes

Magnesium is required for the active transport of ions like potassium and calcium across cell membranes. Through its role in ion transport systems, magnesium affects the conduction of nerve impulses, muscle contraction, and normal heart rhythm (3).

Cell signaling

Cell signaling requires MgATP for the phosphorylation of proteins and the formation of the cell-signaling molecule, cyclic adenosine monophosphate (cAMP). cAMP is involved in many processes, including the secretion of parathyroid hormone (PTH) from the parathyroid glands (see the articles on Vitamin D and Calcium for additional discussions regarding the role of PTH) (3).

Cell migration

Calcium and magnesium levels in the fluid surrounding cells affect the migration of a number of different cell types. Such effects on cell migration may be important in wound healing (3).

Nutrient interactions

Zinc

High doses of zinc in supplemental form apparently interfere with the absorption of magnesium. One study reported that zinc supplements of 142 mg/day in healthy adult males significantly decreased magnesium absorption and disrupted magnesium balance (the difference between magnesium intake and magnesium loss) (4).

Fiber

Large increases in the intake of dietary fiber have been found to decrease magnesium utilization in experimental studies. However, the extent to which dietary fiber affects magnesium nutritional status in individuals with a varied diet outside the laboratory is not clear (2, 3).

Protein

Dietary protein may affect magnesium absorption. One study in adolescent boys found that magnesium absorption was lower when protein intake was less than 30 grams/day, and higher protein intakes (93 grams/day vs. 43 grams/day) were associated with improved magnesium absorption in adolescents (5).

Vitamin D and calcium

The active form of vitamin D (calcitriol) may slightly increase intestinal absorption of magnesium (6). However, it is not clear whether magnesium absorption is calcitriol-dependent as is the absorption of calcium and phosphate. High calcium intake has not been found to affect magnesium balance in most studies. Inadequate blood magnesium levels are known to result in low blood calcium levels, resistance to parathyroid hormone (PTH) action, and resistance to some of the effects of vitamin D (2, 3).

Deficiency

Magnesium deficiency in healthy individuals who are consuming a balanced diet is quite rare because magnesium is abundant in both plant and animal foods and because the kidneys are able to limit urinary excretion of magnesium when intake is low. The following conditions increase the risk of magnesium deficiency (1):

  • Gastrointestinal disorders: Prolonged diarrhea, Crohn’s diseasemalabsorption syndromesceliac disease, surgical removal of a portion of the intestine, and intestinal inflammation due to radiation may all lead to magnesium depletion.
  • Renal disorders (magnesium wasting): Diabetes mellitus and long-term use of certain diuretics (see Drug interactions) may result in increased urinary loss of magnesium. Multiple other medications can also result in renal magnesium wasting (3).
  • Chronic alcoholism: Poor dietary intake, gastrointestinal problems, and increased urinary loss of magnesium may all contribute to magnesium depletion, which is frequently encountered in alcoholics.
  • Age: Several studies have found that elderly people have relatively low dietary intakes of magnesium (7, 8). Intestinal magnesium absorption tends to decrease with age and urinary magnesium excretion tends to increase with age; thus, suboptimal dietary magnesium intake may increase the risk of magnesium depletion in the elderly (2).

Although severe magnesium deficiency is uncommon, it has been induced experimentally. When magnesium deficiency was induced in humans, the earliest sign was decreased serum magnesium levels (hypomagnesemia). Over time, serum calcium levels also began to decrease (hypocalcemia) despite adequate dietary calcium. Hypocalcemia persisted despite increased secretion of parathyroid hormone (PTH), which regulates calcium homeostasis. Usually, increased PTH secretion quickly results in the mobilization of calcium from bone and normalization of blood calcium levels. As the magnesium depletion progressed, PTH secretion diminished to low levels. Along with hypomagnesemia, signs of severe magnesium deficiency included hypocalcemia, low serum potassium levels (hypokalemia), retention of sodium, low circulating levels of PTH, neurological and muscular symptoms (tremor, muscle spasms, tetany), loss of appetite, nausea, vomiting, and personality changes (3).

The Recommended Dietary Allowance (RDA)

In 1997, the Food and Nutrition Board of the Institute of Medicine increased the recommended dietary allowance (RDA) for magnesium, based on the results of recent, tightly controlled balance studies that utilized more accurate methods of measuring magnesium (2Table 1). Balance studies are useful for determining the amount of a nutrient that will prevent deficiency; however, such studies provide little information regarding the amount of a nutrient required for chronic disease prevention or optimum health.

Table 1. Recommended Dietary Allowance (RDA) for Magnesium
Life Stage Age Males (mg/day) Females (mg/day)
Infants 0-6 months 30 (AI) 30 (AI)
Infants 7-12 months 75 (AI) 75 (AI)
Children 1-3 years 80 80
Children 4-8 years 130 130
Children 9-13 years 240 240
Adolescents 14-18 years 410 360
Adults 19-30 years 400 310
Adults 31 years and older 420 320
Pregnancy 18 years and younger 400
Pregnancy 19-30 years 350
Pregnancy 31 years and older 360
Breast-feeding 18 years and younger 360
Breast-feeding 19-30 years 310
Breast-feeding 31 years and older 320

Disease Prevention

Metabolic syndrome

Low magnesium intakes have been associated with the diagnosis of metabolic syndrome. The concomitant presentation of several metabolic disorders in an individual, including dyslipidemia, hypertensioninsulin resistance, and obesity, increases the risk for type 2 diabetes mellitus and cardiovascular disease. Systemic inflammation, which contributes to the development of metabolic disorders, has been inversely correlated with magnesium intakes in a cross-sectional study of 11,686 middle-aged women; the lowest prevalence of metabolic syndrome was found in the group of women with the highest quintile of magnesium intakes (median intake, 422 mg/day) (9).

Hypertension (high blood pressure)

Large epidemiological study studies suggest a relationship between magnesium and blood pressure. However, the fact that foods high in magnesium (fruit, vegetables, whole grains) are frequently high in potassium and dietary fiber has made it difficult to evaluate the independent effects of magnesium on blood pressure. A prospective cohort study of more than 30,000 male health professionals found an inverse association between dietary fiber, potassium, and magnesium and the development of hypertension over a four-year period (10). In a similar study of more than 40,000 female registered nurses, dietary fiber and dietary magnesium were each inversely associated with systolic and diastolic blood pressures in those who did not develop hypertension over the four-year study period, but neither dietary fiber nor magnesium was related to the risk of developing hypertension (11). The Atherosclerosis Risk in Communities (ARIC) study examined dietary magnesium intake, magnesium blood levels, and risk of developing hypertension in 7,731 men and women over a six-year period (12). The risk of developing hypertension in both men and women decreased as serummagnesium levels increased, but the trend was statistically significant only in women.

However, circulating magnesium represents only 1% of total body stores and is tightly regulated; thus, serum magnesium levels might not best reflect magnesium status. A recent prospective study that followed 5,511 men and women for a median period of 7.6 years found that the highest levels of urinary magnesium excretion corresponded to a 25% reduction in risk of hypertension, but plasma magnesium levels were not correlated with risk of hypertension (13). In cohort of 28,349 women followed for 9.3 years, the risk of hypertension was 7% lower for those with the highest magnesium intakes (434 mg/day vs. 256 mg/day) (14). The relationship between magnesium intake and risk of hypertension suggests that magnesium supplementation might play a role in preventing hypertension; however, randomized controlled trials are needed to assess whether supplemental magnesium might help prevent hypertension in high-risk individuals.

Diabetes mellitus

Public health concerns regarding the epidemics of obesity and type 2 diabetes mellitus and the prominent role of magnesium in glucose metabolism have led scientists to investigate the relationship between magnesium intake and type 2 diabetes mellitus. A prospective study that followed more than 25,000 individuals, 35 to 65 years of age, for seven years found no difference in incidence of diabetes mellitus when comparing the highest (377 mg/day) quintile of magnesium intake to the lowest (268 mg/day) (15). However, inclusion of this study in a meta-analysis of eight cohort studies showed that risk of type 2 diabetes was inversely correlated with magnesium intake (15). A second meta-analysis found that an increase of 100 mg/day in magnesium intake was associated with a 15% decrease in the risk of developing type 2 diabetes (16). The most recent meta-analysis of 13 observational studies, published in the last 15 years and including almost 540,000 individuals and 24,500 new cases of diabetes, found higher magnesium intakes were associated with a lower risk of diabetes (17).

Insulin resistance, which is characterized by alterations in both insulin secretion by the pancreas and insulin action on target tissues, has been linked to magnesium deficiency. An inverse association between magnesium intakes and fasting insulin levels was evidenced in a meta-analysis of 11 cohort studies that followed more than 36,000 participants without diabetes (18). It is thought that pancreatic β-cells, which regulate insulin secretion and glucose tolerance, could become less responsive to changes in insulin sensitivity in magnesium-deficient subjects (19). A randomizeddouble-blindplacebo-controlled trial, which enrolled 97 individuals (without diabetes and with normal blood pressure) with significant hypomagnesemia (serum magnesium level ≤0.70 mmoles/L), showed that daily consumption of 638 mg of magnesium (from a solution of magnesium chloride) for three months improved the function of pancreatic β-cells, resulting in lower fasting glucose and insulin levels (20). Increased insulin sensitivity also accompanied the correction of magnesium deficiency in patients diagnosed with insulin resistance but not diabetes (21). Another study found that supplementation with 365 mg/day of magnesium (from magnesium aspartate hydrochloride) for six months reduced insulin resistance in 47 overweight individuals even though they displayed normal values of serum and intracellular magnesium (22). This suggests that magnesium might have additive effects on glucose tolerance and insulin sensitivity that go beyond the normalization of physiologic serum concentrations in deficient individuals.

Cardiovascular disease

A number of studies have found decreased mortality from cardiovascular disease in populations who routinely consume “hard” water. Hard (alkaline) water is generally high in magnesium but may also contain more calcium and fluoride than “soft” water, making the cardioprotective effects of hard water difficult to attribute to magnesium alone (23). One large prospective study (almost 14,000 men and women) found a significant trend for increasing serum magnesium levels to be associated with decreased risk of coronary heart disease (CHD) in women but not in men (24). However, the risk of CHD in the lowest quartile of dietary magnesium intake was not significantly higher than the risk in the highest quartile in men or women. This prospective study was included in a meta-analysis of 14 studies that found a 22% lower risk of CHD (but not fatal CHD) per 200 mg/day incremental intake in dietary magnesium (25). In another prospective study, which followed nearly 90,000 female nurses for 28 years, women in the highest quintile of magnesium intake had a 39% lower risk of fatal myocardial infarction (but not nonfatal myocardial infarction) compared to those in the lowest quintile (>342 mg/day versus <246 mg/day) (26). Higher magnesium intakes were associated with an 8%-11% reduction in stroke risk in two meta-analyses of prospective studies, each including over 240,000 participants (27, 28). Additionally, a meta-analysis of 13 prospective studies in over 475,000 participants reported that the risk of total cardiovascular events, including stroke, nonfatal myocardial infarction, and CHD, was 15% lower in individuals with higher intakes of magnesium (29). Finally, a meta-analysis of six prospective studies found no association between magnesium intake and cardiovascular mortality risk (30). However, a recent prospective study that followed 3,910 subjects for 10 years found significant correlations between hypomagnesemia and all-cause mortality, including cardiovascular-related mortality (31). Presently, well-controlled intervention trials are required to assess the benefit of magnesium supplementation in the prevention of cardiovascular disease.

Stroke

Occurrence of hypomagnesemia has been reported in patients who suffered from a subarachnoid hemorrhage caused by the rupture of a cerebral aneurysm (32). Poor neurologic outcomes following an aneurysmal subarachnoid hemorrhage (aSAH) have been linked to inappropriate calcium-dependent contraction of arteries (known as cerebral arterial vasospasm), leading to delayed cerebral ischemia (33). Magnesium sulfate is a calcium antagonist and potent vasodilator that has been considered in the prevention of vasospasm after aSAH. Several randomized controlled trials have assessed the effect of intravenous (IV) magnesium sulfate infusions. A meta-analysis of nine randomized controlled trials found that magnesium therapy after aSAH significantly reduced vasospasm but failed to prevent neurologic deterioration or decrease the risk of death (34). The most recent meta-analysis of 13 trials in 2,413 aSAH patients concluded that the infusion of magnesium sulfate had no benefits in terms of neurologic outcome and mortality, despite a reduction in the incidence of delayed cerebral ischemia (35). At present, the data advise against the use of intravenous magnesium in clinical practice for aSAH patients after normalization of their magnesium status.

Complications of heart surgery

Atrial arrhythmia is a condition defined as the occurrence of persistent heart rate abnormalities that often complicate the recovery of patients after cardiac surgery. The use of magnesium in the prophylaxis of postoperative atrial arrhythmia after coronary artery bypass grafting has been evaluated as a sole or adjunctive agent to classical antiarrhythmic molecules (namely, β-blockers and amiodarone) in several prospective, randomized controlled trials. A meta-analysis of 21 intervention studies showed that intravenous magnesium infusions could significantly reduce postoperative atrial arrhythmia in treated compared to untreated patients (36). However, a meta-analysis of five randomized controlled trials concerned with rhythm-control prophylaxis showed that intravenous magnesium added to β-blocker treatment did not decrease the risk of atrial arrhythmia compared to β-blocker alone and was associated with more adverse effects (bradycardia and hypotension) (37). Presently, the findings support the use of β-blockers and amiodarone, but not magnesium, in patients with contraindications to first-line antiarrhythmics.

Osteoporosis

Although decreased bone mineral density (BMD) is the primary feature of osteoporosis, other osteoporotic changes in the collagenous matrix and mineral components of bone may result in bones that are brittle and more susceptible to fracture. Magnesium comprises about 1% of bone mineral and is known to influence both bone matrix and bone mineral metabolism. As the magnesium content of bone mineral decreases, apatite crystals of bone become larger and more brittle. Some studies have found lower magnesium content and larger apatite crystals in bones of women with osteoporosis compared to women without the disease (38). Inadequate serum magnesium levels are known to result in low serum calcium levels, resistance to parathyroid hormone (PTH) action, and resistance to some of the effects of vitamin D (calcitriol), all of which can lead to increased bone loss (see the articles on Vitamin D and Calcium). A study of over 900 elderly men and women found that higher dietary magnesium intakes were associated with increased BMD at the hip in both men and women. However, because magnesium and potassium are present in many of the same foods, the effect of dietary magnesium could not be isolated (39). A cross-sectional study in over 2,000 elderly individuals reported that magnesium intake was positively associated with total-body BMD in white men and women but not in black men and women (40). More recently, a large cohort study conducted in almost two-thirds of the Norwegian population found the level of magnesium in drinking water was inversely correlated with risk of hip fracture (41).

Few studies have addressed the effect of magnesium supplementation on BMD or osteoporosis in humans. In a small group of postmenopausal women with osteoporosis, magnesium supplementation of 750 mg/day for the first six months followed by 250 mg/day for 18 more months resulted in increased BMD at the wrist after one year, with no further increase after two years of supplementation (42). A study in postmenopausal women who were taking estrogen replacement therapy and also a multivitamin found that supplementation with an additional 500 mg/day of magnesium and 600 mg/day of calcium resulted in increased BMD at the heel compared to postmenopausal women receiving only estrogen replacement therapy (43). Evidence is not yet sufficient to suggest that supplemental magnesium could be recommended in the prevention of osteoporosis unless normalization of serum magnesium levels is required. Moreover, it appears that high magnesium levels could be harmful to skeletal health by interfering with the action of the calciotropic hormones, PTH and calcitriol (44). Presently, the potential for increased magnesium intake to influence calcium and bone metabolism warrants more research with particular attention to its role in the prevention and treatment of osteoporosis.

Disease Treatment

The use of pharmacologic doses of magnesium to treat specific diseases is discussed below. Although many of the cited studies utilized supplemental magnesium at doses considerably higher than the tolerable upper intake level (UL), which is 350 mg/day set by the Food and Nutrition Board (see Safety), it is important to note that these studies were all conducted under medical supervision. Because of the potential risks of high doses of supplemental magnesium, especially in the presence of impaired kidney function, any disease treatment trial using magnesium doses higher than the UL should be conducted under medical supervision.

Pregnancy complications

Preeclampsia and eclampsia

Preeclampsia and eclampsia are pregnancy-specific conditions that may occur anytime after 20 weeks of pregnancy through six weeks following birth. Approximately 7% of pregnant women in the US develop preeclampsia-eclampsia. Preeclampsia (sometimes called toxemia of pregnancy) is defined as the presence of elevated blood pressure (hypertension), protein in the urine, and severe swelling (edema) during pregnancy. Eclampsia occurs with the addition of seizures to the triad of symptoms and is a significant cause of perinatal and maternal death (45). Although cases of preeclampsia are at high risk of developing eclampsia, one-quarter of eclamptic women do not initially exhibit preeclamptic symptoms (46). For many years, high-dose intravenous magnesium sulfate has been the treatment of choice for preventing eclamptic seizures that may occur in association with preeclampsia-eclampsia late in pregnancy or during labor (47, 48). A systematic review of seven randomized trials compared the administration of magnesium sulfate with diazepam (a known anticonvulsant) treatment on perinatal outcomes in 1,396 women with eclampsia. Risks of recurrent seizures and maternal death were significantly reduced by the magnesium regimen compared to diazepam. Moreover, the use of magnesium for the care of eclamptic women resulted in newborns with higher Apgar scores; there was no significant difference in the risk of preterm birth and perinatal mortality (46). Additional research has confirmed that infusion of magnesium sulfate should always be considered in the management of preeclampsia and eclampsia to prevent initial and recurrent seizures (49).

Perinatal neuroprotection

While intravenous magnesium sulfate is included in the medical care of preeclampsia and eclampsia, the American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine support its use in two additional situations: specific conditions of short-term prolongation of pregnancy and neuroprotection of the fetus in anticipated premature delivery (50). The relationship between magnesium sulfate and risk of cerebral damage in premature infants has been assessed in observational studies. A meta-analysis of six case-control and five prospective cohort studies showed that the use of magnesium significantly reduced the risk of cerebral palsy, as well as mortality (51). However, the high degree of heterogeneity among the cohort studies and the fact that corticosteroid exposure (which is known to decrease antenatal mortality) was higher in the cases of children exposed to magnesium compared to controls imply a cautious interpretation of the results. However, a meta-analysis of five randomized controlled trials, which included a total of 6,145 babies, found that magnesium therapy given to mothers delivering before term decreased the risk of cerebral palsy and gross motor dysfunction, without modifying the risk of other neurologic impairments or mortality in early childhood (52). Another meta-analysis conducted on five randomized controlled trials found that intravenous magnesium administration to newborns who suffered from perinatal asphyxia could be beneficial in terms of short-term neurologic outcomes, although there was no effect on mortality (53). Nevertheless, additional trials are needed to evaluate the long-term benefits of magnesium in pediatric care.

Cardiovascular disease

Hypertension (high blood pressure)

While results from intervention studies have not been entirely consistent (2), the latest review of the data highlighted a therapeutic benefit of magnesium supplements in treating hypertension. A recent meta-analysis examined 22 randomizedplacebo-controlled trials of magnesium supplementation conducted in 1,173 individuals with either a normal blood pressure (normotensive) or hypertension, both treated or untreated with medications. Oral supplementation with magnesium (mean dose of 410 mg/day; range of 120 to 973 mg/day) for a median period of 11.3 months significantly reduced systolic blood pressure by 2-3 mm Hg and diastolic blood pressure by 3-4 mm Hg (54); a greater effect was seen at higher doses (≥370 mg/day). The results of 19 of the 22 trials included in the meta-analysis were previously reviewed together with another 25 intervention studies (55). The systematic examination of these 44 trials suggested a blood pressure-lowering effect associated with supplemental magnesium in hypertensive but not in normotensive individuals. Magnesium doses required to achieve a decrease in blood pressure appeared to depend on whether subjects with high blood pressure were treated with antihypertensive medications, including diuretics. Intervention trials on treated subjects showed a reduction in hypertension with magnesium doses from 243 mg/day to 486 mg/day, whereas untreated patients required doses above 486 mg/day to achieve a significant decrease in blood pressure. While oral magnesium supplementation may be helpful in hypertensive individuals who are depleted of magnesium due to chronic diuretic use and/or inadequate dietary intake (56), several dietary factors play a role in hypertension. For example, adherence to the DASH diet — a diet rich in fruit, vegetables, and low-fat dairy and low in saturated and total fats — has been linked to significant reductions in systolic and diastolic blood pressures (57). See the article in the Spring/Summer 2009 Research Newsletter, Dietary and Lifestyle Strategies to Control Blood Pressure.

Myocardial infarction (heart attack)

Results of a meta-analysis of randomizedplacebo-controlled trials indicated that an intravenous (IV) magnesium infusion given early after suspected myocardial infarction(MI) could decrease the risk of death. The most influential study included in the meta-analysis was a randomized, placebo-controlled trial in 2,316 patients that found a significant reduction in mortality (7.8% all-cause mortality in the experimental group vs. 10.3% all-cause mortality in the placebo group) in the group of patients given intravenous magnesium sulfate within 24 hours of suspected myocardial infarction (58). Follow-up from one to five years after treatment revealed that the mortality from cardiovascular disease was 21% lower in the magnesium treated group (59). However, a larger placebo-controlled trial that included more than 58,000 patients found no significant reduction in five-week mortality in patients treated with intravenous magnesium sulfate within 24 hours of suspected myocardial infarction, resulting in controversy regarding the efficacy of the treatment (60). A US survey of the treatment of more than 173,000 patients with acute MI found that only 5% were given IV magnesium in the first 24 hours after MI, and that mortality was higher in patients treated with IV magnesium compared to those not treated with magnesium (61). The most recent systematic review of 26 clinical trials, including 73,363 patients, concluded that IV magnesium likely does not reduce mortality following MI and thus should not be utilized as a treatment (62). Thus, the use of IV magnesium sulfate in the therapy of acute MI remains controversial.

Endothelial dysfunction

Vascular endothelial cells line arterial walls where they are in contact with the blood that flows through the circulatory system. Normally functioning vascular endothelium promotes vasodilation when needed, for example, during exercise, and inhibits the formation of blood clots. Conversely, endothelial dysfunction results in widespread vasoconstriction and coagulation abnormalities. In cardiovascular disease, chronic inflammation is associated with the formation of atherosclerotic plaques in arteries. Atherosclerosis impairs normal endothelial function, increasing the risk of vasoconstriction and clot formation, which may lead to heart attack or stroke (reviewed in 63). Research studies have indicated that pharmacologic doses of oral magnesium may improve endothelial function in individuals with cardiovascular disease. A randomizeddouble-blindplacebo-controlled trial in 50 men and women with stable coronary artery disease found that six months of oral magnesium supplementation (730 mg/day) resulted in a 12% improvement in flow-mediated vasodilation compared to placebo (64). In other words, the normal dilation response of the brachial (arm) artery to increased blood flow was improved. Magnesium supplementation also resulted in increased exercise tolerance during an exercise stress test compared to placebo. In another study of 42 patients with coronary artery disease who were already taking low-dose aspirin (an inhibitor of platelet aggregation), three months of oral magnesium supplementation (800 to 1,200 mg/day) resulted in an average 35% reduction in platelet-dependent thrombosis, a measure of the propensity of blood to clot (65). Additionally, a study in 657 women participating in the Nurses’ Health Study reported that dietary magnesium intake was inversely associated with E-selectin, a marker of endothelial dysfunction (66)In vitro studies using human endothelial cells have provided mechanistic insights into the association of low magnesium concentrations, chronic inflammation, and endothelial dysfunction (67). Finally, since magnesium can function as a calcium antagonist, it has been suggested that it could be utilized to slow down or reverse the calcification of vessels observed in patients with chronic kidney disease. The atherosclerotic process is often accelerated in these subjects, and patients with chronic kidney disease have higher rates of cardiovascular-related mortality compared to the general population (68). Additional studies are needed to assess whether magnesium may be of benefit in improving endothelial function in individuals at high risk for cardiovascular disease.

Diabetes mellitus

Magnesium depletion is commonly associated with both insulin-dependent (type 1) and non-insulin dependent (type 2) diabetes mellitus. Reduced serum levels of magnesium (hypomagnesemia) have been reported in 13.5% to 47.7% of individuals with type 2 diabetes (69). One cause of the depletion may be increased urinary loss of magnesium, which results from increased urinary excretion of glucose that accompanies poorly controlled diabetes. Magnesium depletion has been shown to increase insulin resistance in a few studies and may adversely affect blood glucose control in diabetes (70). One study reported that dietary magnesium supplements (390 mg/day of elemental magnesium for four weeks) improved glucose tolerance in elderly individuals (71). Another small study in nine patients with type 2 diabetes reported that supplemental magnesium (300 mg/day for 30 days), in the form of a liquid, magnesium-containing salt solution, improved fasting insulin levels but did not affect fasting glucose levels (72). Yet, the most recent meta-analysis of nine randomizeddouble-blind, controlled trials concluded that oral supplemental magnesium may lower fasting plasma glucose levels in individuals with diabetes (73). One randomized, double-blind, placebo-controlled study in 63 individuals with type 2 diabetes and hypomagnesemia found that those taking an oral magnesium chloride solution (638 mg/day of elemental magnesium) for 16 weeks had improved measures of insulin sensitivity and glycemic control compared to those taking a placebo (74). Large-scale, well-controlled studies are needed to determine whether magnesium supplementation has any long-term therapeutic benefit in patients with type 2 diabetes. However, correcting existing magnesium deficiencies may improve glucose metabolism and insulin sensitivity in those with diabetes.

Migraine headaches

Individuals who suffer from recurrent migraine headaches have lower intracellular magnesium levels (demonstrated in both red blood cells and white blood cells) than individuals who do not experience migraines (75). Additionally, the incidence of ionized magnesium deficiency has been found to be higher in women with menstrualmigraine compared to women who don’t experience migraines with menstruation (76). Oral magnesium supplementation has been shown to increase intracellular magnesium levels in individuals with migraines, leading to the hypothesis that magnesium supplementation might be helpful in decreasing the frequency and severity of migraine headaches. Two early placebo-controlled trials demonstrated modest decreases in the frequency of migraine headaches after supplementation with 600 mg/day of magnesium (75, 77). Another placebo-controlled trial in 86 children with frequent migraine headaches found that oral magnesium oxide (9 mg/kg body weight/day) reduced headache frequency over the 16-week intervention (78). However, there was no reduction in the frequency of migraine headaches with 485 mg/day of magnesium in another placebo-controlled study conducted in 69 adults suffering migraine attacks (79). The efficiency of magnesium absorption varies with the type of oral magnesium complex, and this might explain the conflicting results. Although no serious adverse effects were noted during these migraine headache trials, 19% to 40% of individuals taking the magnesium supplements have reported diarrhea and gastric (stomach) irritation.

The efficacy of magnesium infusions was also investigated in a randomized, single-blind, placebo-controlled, cross-over trial of 30 patients with migraine headaches (80). The administration of 1 gram of intravenous (IV) magnesium sulfate ended the attacks, abolished associated symptoms, and prevented recurrence within 24 hours in nearly 90% of the subjects. While this promising result was confirmed in another trial (81), two additional randomized, placebo-controlled studies found that magnesium sulfate was less effective than other molecules (e.g., metoclopramide) in treating migraines (82, 83). The most recent meta-analysis of five randomized, double-blind, controlled trials reported no beneficial effect of IV magnesium for migraine in adults (84). However, the effect of magnesium should be examined in larger studies targeting primarily migraine sufferers with hypomagnesemia (85).

Asthma

The occurrence of hypomagnesemia may be greater in patients with asthma than in individuals without asthma (86). Several clinical trials have examined the effect of intravenous (IV) magnesium infusions on acute asthmatic attacks. One double-blindplacebo-controlled trial in 38 adults with acute asthma, who did not respond to initial treatment in the emergency room, found improved lung function and decreased likelihood of hospitalization when IV magnesium sulfate was infused compared to a placebo (87). However, another placebo-controlled, double-blind study in 48 adults reported that IV infusion of magnesium sulfate did not improve lung function in patients experiencing an acute asthma attack (88). A systematic review of seven randomized controlled trials (five adult and two pediatric) concluded that IV magnesium sulfate is beneficial in patients with severe, acute asthma (89). In addition, a meta-analysis of five randomized placebo-controlled trials, involving 182 children with severe asthma, found that IV infusion of magnesium sulfate was associated with a 71% reduction in the need for hospitalization (90). In the most recent meta-analysis of 16 randomized controlled trials (11 adult and 5 pediatric), IV magnesium sulfate treatment was associated with a significant improvement of respiratory function in both adults and children with acute asthma treated with β2-agonists and systemic steroids (91). At present, available evidence indicates that IV magnesium infusion is an efficacious treatment for severe, acute asthma; however, oral magnesium supplementation is of no known value in the management of chronic asthma (92-94). Nebulized, inhaled magnesium for treating asthma requires further investigation. A meta-analysis of eight randomized controlled trials in asthmatic adults showed that nebulized, inhaled magnesium sulfate had benefits with respect to improved lung function and decreased hospital admissions (91). However, a recent systematic review of 16 randomized controlled trials, including adults, children, or both, found little evidence that inhaled magnesium sulfate, along with a β2-agonist, improved pulmonary function in patients with acute asthma (95).

Sources

Food sources

A large US national survey indicated that average magnesium intake is about 350 mg/day for men and about 260 mg/day for women — significantly below the current recommended dietary allowance (RDA). Magnesium intakes were even lower in men and women over 50 years of age (8). Such findings suggest that marginal magnesium deficiency may be relatively common in the US.

Since magnesium is part of chlorophyll, the green pigment in plants, green leafy vegetables are rich in magnesium. Unrefined grains (whole grains) and nuts also have high magnesium content. Meats and milk have an intermediate content of magnesium, while refined foods generally have the lowest. Water is a variable source of intake; harder water usually has a higher concentration of magnesium salts (2). Some foods that are relatively rich in magnesium are listed in Table 2, along with their magnesium content in milligrams (mg). For more information on the nutrient content of foods, search the USDA food composition database.

Table 2. Some Food Sources of Magnesium
Food Serving Magnesium (mg)
Cereal, all bran ½ cup 112
Cereal, oat bran ½ cup dry 96
Brown rice, medium-grain, cooked 1 cup 86
Fish, mackerel, cooked 3 ounces 82
Spinach, frozen, chopped, cooked ½ cup 78
Almonds 1 ounce (23 almonds) 77
Swiss chard, chopped, cooked ½ cup 75
Lima beans, large, immature seeds, cooked ½ cup 63
Cereal, shredded wheat 2 biscuits 61
Peanuts 1 ounce 48
Molasses, blackstrap 1 tablespoon 48
Hazelnuts 1 ounce (21 hazelnuts) 46
Okra, frozen, cooked ½ cup 37
Milk, 1% fat 8 fluid ounces 34
Banana 1 medium 32

Supplements

Magnesium supplements are available as magnesium oxide, magnesium gluconate, magnesium chloride, and magnesium citrate salts, as well as a number of amino acidchelates, including magnesium aspartate. Magnesium hydroxide is used as an ingredient in several antacids (96).

Safety

Toxicity

Adverse effects have not been identified from magnesium occurring naturally in food. However, adverse effects from excess magnesium have been observed with intakes of various magnesium salts (i.e., supplemental magnesium) (6). The initial symptom of excess magnesium supplementation is diarrhea — a well-known side effect of magnesium that is used therapeutically as a laxative. Individuals with impaired kidney function are at higher risk for adverse effects of magnesium supplementation, and symptoms of magnesium toxicity have occurred in people with impaired kidney function taking moderate doses of magnesium-containing laxatives or antacids. Elevated serum levels of magnesium (hypermagnesemia) may result in a fall in blood pressure (hypotension). Some of the later effects of magnesium toxicity, such as lethargy, confusion, disturbances in normal cardiac rhythm, and deterioration of kidney function, are related to severe hypotension. As hypermagnesemia progresses, muscle weakness and difficulty breathing may occur. Severe hypermagnesemia may result in cardiac arrest (2, 3). The Food and Nutrition Board (FNB) of the Institute of Medicine set the tolerable upper intake level (UL) for magnesium at 350 mg/day (Table 3); this UL represents the highest level of daily supplemental magnesium intake likely to pose no risk of diarrhea or gastrointestinal disturbance in almost all individuals. The FNB cautions that individuals with renal impairment are at higher risk for adverse effects from excess supplemental magnesium intake. However, the FNB also notes that there are some conditions that may warrant higher doses of magnesium under medical supervision (2).

Table 3. Tolerable Upper Intake Level (UL) for Supplemental Magnesium
Age Group UL (mg/day)
Infants 0-12 months Not possible to establish*
Children 1-3 years 65
Children 4-8 years 110
Children 9-13 years 350
Adolescents 14-18 years 350
Adults 19 years and older 350
*Source of intake should be from food and formula only.

Drug interactions

Magnesium interferes with the absorption of digoxin (a heart medication), nitrofurantoin (an antibiotic), and certain anti-malarial drugs, which could potentially reduce drug efficacy. Bisphosphonates (e.g., alendronate and etidronate), which are drugs used to treat osteoporosis, and magnesium should be taken two hours apart so that the absorption of the bisphosphonate is not inhibited. Magnesium has also been found to reduce the efficacy of chlorpromazine (a tranquilizer), penicillamine, oral anticoagulants, and the quinolone and tetracycline classes of antibiotics. Because intravenous magnesium has increased the effects of certain muscle-relaxing medications used during anesthesia, it is advisable to let medical staff know if you are taking oral magnesium supplements, laxatives, or antacids prior to surgical procedures. High doses of furosemide (Lasix) and some thiazide diuretics (e.g., hydrochlorothiazide), if taken for extended periods, may result in magnesium depletion (96, 97). Moreover, long-term use (three months or longer) of proton-pump inhibitors (drugs used to reduce the amount of stomach acid) may increase the risk of hypomagnesemia (98, 99). Many other medications may also result in renal magnesium loss (3).

Linus Pauling Institute Recommendation

The Linus Pauling Institute supports the latest RDA for magnesium intake (400-420 mg/day for men and 310-320 mg/day for women). Following the Linus Pauling Institute recommendation to take a daily multivitamin/mineral supplement may ensure an intake of at least 100 mg of magnesium/day. Few multivitamin/mineral supplements contain more than 100 mg of magnesium due to its bulk. Because magnesium is plentiful in foods, eating a varied diet that provides green vegetables, whole grains, and nuts daily should provide the rest of an individual’s magnesium requirement.

Older adults (>50 years)

Older adults are less likely than younger adults to consume enough magnesium to meet their needs and should therefore take care to eat magnesium-rich foods in addition to taking a multivitamin/mineral supplement daily. Since older adults are more likely to have impaired kidney function, they should avoid taking more than 350 mg/day of supplemental magnesium without medical consultation (see Safety).

magnesium-flashcard